

Digue de Saint Félix de Pallières

MINELIS	UMISFX20B	Version V1
---------	-----------	------------

Suivi mensuel – Travaux de réhabilitation de la digue de St Félix de Pallières Campagne du 23 juin 2021

ı	Version	Date	Corrections et modifications
	1	13/09/2021	Première version

Digue de Saint Félix de Pallières

Suivi mensuel – Travaux de réhabilitation de la digue de St Félix de Pallières

Campagne du 23 juin 2021

Auteurs :	MINELIS	Code du document :	UMISFX20B	1
Elise DELPECH		Numéro de version :	V1	ì
		Date :	09/08/2021	ĺ
				ı

Identification du client : UMICORE SAS FRANCE	Référence du contrat : D20-069-06-22-UMISFX
Représentant :	Responsable du projet : MINELIS
Jean-François FARRENQ,	Chef de projet : N.SAUZAY
Responsable environnement	Superviseur : C.GROSSIN

CONTRÔLE INTERNE				
Responsable du document : MINELIS	Nom et fonction : Elise DELPECH, Ingénieur environnement	Date et signature :	13/09/21	
Chef de Projet : MINELIS	Nom et fonction : Nicolas SAUZAY, Directeur Général	Date et signature :	13/09/21	
Superviseur: MINELIS	Nom et fonction : Christophe GROSSIN, Ingénieur environnement	Date et signature :	13/09/21	

PRÉAMBULE

Le présent rapport est rédigé à l'usage exclusif du client et est conforme à la proposition commerciale de MINELIS. Il est établi au vu des informations fournies à MINELIS et des connaissances techniques, réglementaires et scientifiques connues au jour de la commande. La responsabilité de MINELIS ne peut être engagée si le client lui a transmis des informations erronées ou incomplètes.

Toute utilisation partielle ou inappropriée des données contenues dans ce rapport, ou toute interprétation dépassant les conclusions émises, ne saurait engager la responsabilité de MINELIS.

SOMMAIRE

GLOSSAIRE	
Résumé non technique	10
Résumé technique	11
INTRODUCTION	13
1 Localisation du site à l'étude	14
2 Milieu d'exposition et vecteurs de transfert	16
2.1 Schéma conceptuel	
2.2 Sources	
2.3 Milieux et transferts	16
2.4 Enjeux à protéger	16
3 Suivi des eaux et sédiments	18
3.1 Valeurs de référence	
3.1.1 Valeurs de références pour les eaux	
3.1.2 Valeurs de références pour les sédiments	22
3.2 Données pluviométriques	23
3.3 Résultats et interprétation des prélèvements	24
3.3.1 Eaux de surface	
3.3.2 Eaux souterraines	
3.3.3 Sédiments	
3.3.4 Comparaison du ratio Cd/Zn pour la matrice sédiment	
3.4 Comparaisons avec les campagnes précédentes	
3.4.1 Eaux souterraines	
3.4.2 Eaux de surface	
4 Préconisation	35
5 CONCLUSION	36
ANNEXES	39

TABLE DES ANNEXES

ANNEXE 1	Synthèse des résultats sur la matrice sédiment	40
ANNEXE 2	: Normes et limites analytiques sur matrice eau	41
ANNEXE 3	: Normes et limites analytiques sur matrice sédiment	43
ANNEXE 4	: Résultats d'analyses	45
ANNEXE 5	: Fiches de prélèvements ESU	46
ANNEXE 6	: Fiches de prélèvements ESO	47
ANNEXE 7	: Fiches de prélèvements SED	48
ANNFXF 8	: Fiche flaconnage	ДC

TABLE DES ILLUSTRATIONS

Figure 1 : Carte de situation au 1 :40 000 du site des anciennes mines de la Vieille Montagne de Saint Fé	lix de
Pallières dans son contexte hydrographique sur fond IGN	15
Figure 2 : Schéma conceptuel digue de Saint Félix de Pallières	17
Figure 3 : Localisation des points de prélèvements	19
Figure 4 : Relevé pluviométrique de la station de Thoiras (30) pour le mois de juin 2021	23
Figure 5 : Relevé pluviométrique du chantier de septembre 2020 à juin 2021	23
Figure 6 : Comparaison des concentrations en métaux (sur dissous) en fonction des campagnes au droit du Bijournet	
Figure 7 : Comparaison des concentrations en Fer (sur eau brute) en fonction des campagnes au droit de du Bijournet	
Figure 8 : Comparaison des concentrations en métaux (sur dissous) en fonction des campagnes au droit Mortes	•
Figure 9 : Comparaison des concentrations en Fer (sur eau brute) en fonction des campagnes au droit de Mortes	e l'Aigues-

TABLE DES TABLEAUX

Tableau 1 : Résultats d'analyse des prélèvements les eaux de surface de la campagne du 23 juin 2021	24
Tableau 2 : Résultats d'analyse des prélèvements d'eaux souterraines de la campagne du 23 juin 2021	25
Tableau 3 : Résultats d'analyses des prélèvements de sédiments de la campagne du 23 juin 2021	26
Tableau 4 : Ratio des teneurs en Cadmium sur les teneurs en Zinc pour la matrice sédiment	27
Tableau 5 : Synthèse des résultats et plage de valeurs de référence – SORTIE BASSIN	31
Tableau 6 : Synthèse des résultats et plage de valeurs de référence – AVAL_DIGUE	32
Tableau 7 : Synthèse des résultats et plage de valeurs de référence – AVAL_HALDES	32
Tableau 8 : Synthèse des résultats et plage de valeurs de référence – AVAL_AIGUES	32
Tableau 9 : Synthèse des résultats et plage de valeurs de référence – BIJOURNET	33
Tableau 10 · Normes et limites analytiques	/11

GLOSSAIRE

NQE : Norme de Qualité Environnementale

NQE-CMA: Norme de Qualité Environnementale - Concentration Maximale Admissible

NQE- MA: Norme de Qualité Environnementale – Moyenne Annuelle

SAGE : Schéma d'Aménagement et de Gestion des Eaux

COT: Carbone Organique Total

ESO: Eau Souterraine ESU: Eau Surface SED: Sédiment

ZNIEFF: Zone Naturelle d'Intérêt Écologique, Faunistique et Floristique

ND: Non défini

ICP/AES: Spectroscopie d'émission atomique à plasma à couplage inductif

ICP/MS: Spectroscopie de masse à plasma à couplage inductif

Résumé non technique

UMICORE a mandaté MINELIS pour surveiller les eaux superficielles et les sédiments autour de la digue d'anciens résidus miniers de Vieille Montagne à Thoiras (30) ainsi que la Source du Bijournet. La surveillance est réalisée par des campagnes mensuelles de prélèvements de matrice eaux de surface, eaux souterraines et sédiments.

Il ressort des premières campagnes que la qualité des eaux de l'Aigues-Mortes et de la source du Bijournet ne montre pas d'impact significatif pour les métaux analysés. En revanche les sédiments semblent plus impactés par les métaux, notamment pour l'Arsenic (As), le Cuivre (Cu), le Plomb (Pb), le Zinc (Zn), le Mercure (Hg) et le Cadmium (Cd) plus spécifiquement au niveau de l'Aigues Mortes en aval de la digue, au pied de la digue et à la sortie des Haldes.

Une analyse des rapports des teneurs en [Cd]/[Zn], fait ressortir 2 groupes géochimiques distincts :

- AVAL_AIGUES, AVAL_DIGUE, AVAL_HALDES et SORTIE_BASSIN: similaires aux polluants présents dans la digue;
- Source du BIJOURNET : signature différente de celle des échantillons prélevés en aval de la digue.

Cette campagne est la treizième réalisée depuis juin 2020 dans la cadre du suivi environnemental du site au cours de la réhabilitation qui a lieu sur le site de l'ancienne mine de Saint-Félix-de-Pallières localisée sur la commune de Thoiras.

Les résultats des 3 précédentes campagnes sont disponibles dans les rapports suivants :

- UMISFX20B_Campagne du _0325_V.1 (réalisée le 25 mars 2021);
- UMISFX20B_Campagne du _210421_V.1 (réalisée 21 avril 2021);
- UMISFX20B_Campagne du_210519_V.1 (réalisée le 19 mai 2021).

Résumé technique

Synthèse		
Client	UMICORE FRANCE	
Site	Saint Félix de Pallières - Thoiras	
Contexte de l'étude	13 ^{ème} campagne de prélèvement réalisée le 23 juin 2021 – suivi mensuel Surveillance des eaux superficielles, des eaux souterraines et des sédiments autour de la digue d'anciens résidus miniers de Vieille Montagne ainsi que la Source du Bijournet.	
Prestation élémentaire et/ou sédiments	A220 – Prélèvements, mesures, observations et/ou analyses sur les eaux superficielles	
Eaux superficielles	- Analyses mensuelles : Prélèvement au droit d'AVAL_AIGUES, HALDES ET DIGUE	
Résultats analytiques	 La concentration en cadmium (1,14 μg/l) au droit d'AVAL_AIGUES sur eau filtrée est supérieure à la valeur de référence des NQE-CMA (0,45 μg/l). Les concentrations en cadmium (35,9 μg/l) et plomb (32,5 μg/l) au droit d'AVAL_DIGUE sur eau filtrée sont supérieures aux valeurs de référence des NQE-CMA (0,45 μg/l et (14 μg/l). Les autres points n'ont pas pu être prélevés compte tenu de l'assèchement des cours d'eau. 	
Sédiments	 Analyses mensuelles: Prélèvements au droit d'AVAL_AIGUES, AVAL_DIGUE, AVAL_HALDES, SORTIE_BASSIN et SOURCE DU BIJOURNET. 	
Résultats analytiques	 Les concentrations en As, Cd, Pb et Zn dépassent les valeurs de références (respectivement 30, 2, 100 et 300 mg/kg M.S.) définies par (3) l'arrêté du 9 août 2006 modifié par l'arrêté du 30 juin 2020 pour l'ensemble des échantillons. Les concentrations en Hg dépassent la valeur de référence (1 mg/kg M.S.) définie par (3) l'arrêté du 9 août 2006 modifié par l'arrêté du 30 juin 2020 pour les prélèvements AVAL_AIGUES, AVAL_HALDES et AVAL_DIGUE. La concentration en Cu dépasse la valeur de référence (100 mg/kg M.S.) définie par (3) l'arrêté du 9 août 2006 modifié par l'arrêté du 30 juin 2020 	
	pour le prélèvement AVAL_AIGUES.	
Prestation élémentaire	A210 - prélèvements, mesures, observations et /ou analyses sur les eaux souterraines	
Eaux souterraines	- Analyses mensuelles : Prélèvement au droit de la SOURCE DU BIJOURNET	
Résultats analytiques	 La concentration en Fer (990 μg/l) dépasse la valeur de référence (200 μg/l) définie par (1) l'arrêté du 17 décembre 2008 complété par la circulaire du 23 octobre 2012 et modifié par l'arrêté du 23 juin 2016. 	

Conclusion et préconisations

Eaux superficielles Eaux souterraines Sédiments

ESO:

De manière générale les concentrations en métaux lourds analysés dans la source du Bijournet apparaissent stables entre les campagnes de juin 2020 à juin 2021.Il est à noter cependant de faibles variations des concentrations liées à la pluviométrie.

ESU:

- Les résultats de la campagne de juin 2021 ne montrent pas d'impact significatif pour les eaux de surface au droit de l'Aigues-Mortes en aval de la digue pour les paramètres analysés. Seule la concentration en cadmium pour l'échantillon AVAL_AIGUES (1,14 µg/l) filtrée est supérieure à la valeur de référence (0,45 µg/l) définie par (2) par l'arrêté du 25 janvier 2010. Il est tout de même à noter une augmentation en plomb lors de cette campagne.
- En revanche, au droit d'AVAL_DIGUE les concentrations en cadmium (35,9 μg/l) et plomb (32,5 μg/l) sur eau filtrée dépassent les valeurs de références des NQE-CMA (respectivement 0,45 μg/l et 14 μg/l) définies par (2) par l'arrêté du 25 janvier 2010.
- Les autres points surveillés n'ont pas pu être prélevés compte tenu de l'assèchement des cours d'eau.

SED:

Les résultats de la campagne de juin 2021, à l'image des campagnes précédentes, montrent un impact notamment en métaux lourd sur les sédiments analysés.

- Au droit de la source du BIJOURNET, les concentrations en métaux lourds ont tendance à être stables au cours des campagnes de prélèvements. Il est à noter pour la campagne de juin 2021 des concentrations en plomb et mercure supérieures aux valeurs définies dans la plage de référence. L'évolution des ces paramètres est à suivre lors des prochaines campagnes.
- Au droit d'AVAL_DIGUE et d'AVAL HALDES le pic de teneur en Arsenic observé lors de la précédente campagne n'a pas été enregistré pour le mois du juin.
 Le prélèvement AVAL DIGUE est effectué au droit du bassin de décantation provisoire en aval de la digue, l'emplacement du point de prélèvement peut être modifié en fonction du niveau d'eau du bassin ou selon l'avancée du chantier.
- Au droit d'AVAL_AIGUES les concentrations en métaux lourds ont tendance à être stables au cours des campagnes de prélèvements. Les fortes teneurs en arsenic observées lors de la précédente campagne (au droit d'AVAL_DIGUE et d'AVAL_HALDES) n'ont pas été enregistrées en aval dans l'Aigues Mortes. Cependant, lors de la campagne du 23 juin 2021 l'Arsenic et le Fer sont en augmentation, ces teneurs restent dans l'intervalle de valeurs définies avant l'ouverture des résidus.
- Au droit de SORTIE_BASSIN, les concentrations en métaux lourds restent dans les mêmes ordres de grandeurs au cours des campagnes de prélèvements.
 Ces variations de concentrations observées semblent liées à l'hétérogénéité du sol au droit du prélèvement. En effet, le prélèvement est effectué en lisière de forêt au Nord de la zone de l'emprise du chantier.

INTRODUCTION

Dans le cadre de la réalisation des travaux de reprofilage et de confinement de la digue à résidus miniers de l'ancienne mine de Saint-Félix-de-Pallières localisée sur la commune de Thoiras, un programme de surveillance a été établi conformément à l'arrêté préfectoral n°30-2020-06-24-002.

Cet arrêté définit en particulier les modalités de surveillance des effets des travaux sur l'environnement (article 4.2), par l'intermédiaire de prélèvements d'eaux souterraines, d'eaux de surface et de sédiments et par le suivi et l'analyse de l'envol des poussières. Cet arrêté a été établi le 30 juin 2020.

L'objectif est de contrôler l'état :

- Des eaux de surface et des sédiments à l'aide de prélèvements moyens mensuels :
 - ✓ À 1,2 km en aval de la digue sur l'Aigues Mortes (AVAL_AIGUES);
 - ✓ Au pied du talus de la digue, avant la jonction avec l'écoulement en provenance des haldes au niveau du bassin de décantation provisoires (AVAL_DIGUE);
 - ✓ Après la jonction avec l'Aigues Mortes récupérant les écoulements des haldes (AVAL HALDES);
 - ✓ Point dans le vallon nord dans lequel les eaux du bassin de régulation sont rejetées (SORTIE BASSIN);
- Des eaux souterraines et des sédiments à l'aide de prélèvements moyens mensuels :
 - ✓ À quelques mètres de la résurgence de la source du Bijournet (BIJOURNET).
- Des poussières à l'aide de prélèvements en continu sur une durée de 30 jours ± 6 jours :
 - ✓ Partie NORD : Hameau de Pallières Jauge OWEN témoin
 - ✓ Sur site : à l'entrée de la digue
 - ✓ Partie SUD : Ancien atelier de la mine Direction des vents dominants.

Ce suivi est fait depuis le 26 juin 2020 pour le compte d'UMICORE, maître d'ouvrage, par MINELIS

Cette prestation SUIVI suit la norme NF X31-620-2 relative aux prestations concernant les sites et sols pollués – Exigences dans le domaine des prestations d'études, d'assistance et de contrôle. Elle inclue les prestations élémentaires :

- A220 : prélèvements, mesures, observations et /ou analyses sur les eaux superficielles et les sédiments ;
- A210: prélèvements, mesures, observations et /ou analyses sur les eaux souterraines;
- A270 : Interprétation des résultats des investigations.

Ce rapport rassemble les résultats du contrôle de la qualité des eaux de surface, des eaux souterraines et des sédiments réalisé le 23 juin 2021.

Le suivi des poussières fait l'objet de rapports séparés.

1 Localisation du site à l'étude

Le site minier de la Croix-de-Pallières, objet de l'étude, est localisé sur les communes de Saint Félix de Pallières et de Thoiras localisées à 15 km à vol d'oiseau au sud ouest de la commune d'Ales dans le Gard (30). La digue à résidus est installée sur des formations karstiques datées du permien supérieur (Sinémurien-Carixien) à l'hettangien (Lias). La zone géographique possède une géologie très variée, dont la nature est principalement calcaire, dolomitique et karstique.

La région est sujette aux épisodes dits « cévenol », qui se caractérisent par des évènements pluvieux violents qui habituellement se déroulent sur plusieurs heures voire plusieurs jours et donnent des hauteurs d'eau comprises entre 200 et 400 mm mais pouvant être bien plus élevée.

Le chantier se situe dans un environnement forestier classé en ZNIEFF de type II. Les environs de la digue à résidus sont caractérisés principalement par la présence de forêts et de haldes, correspondant à des stériles miniers, installés dans le fond de la vallée.

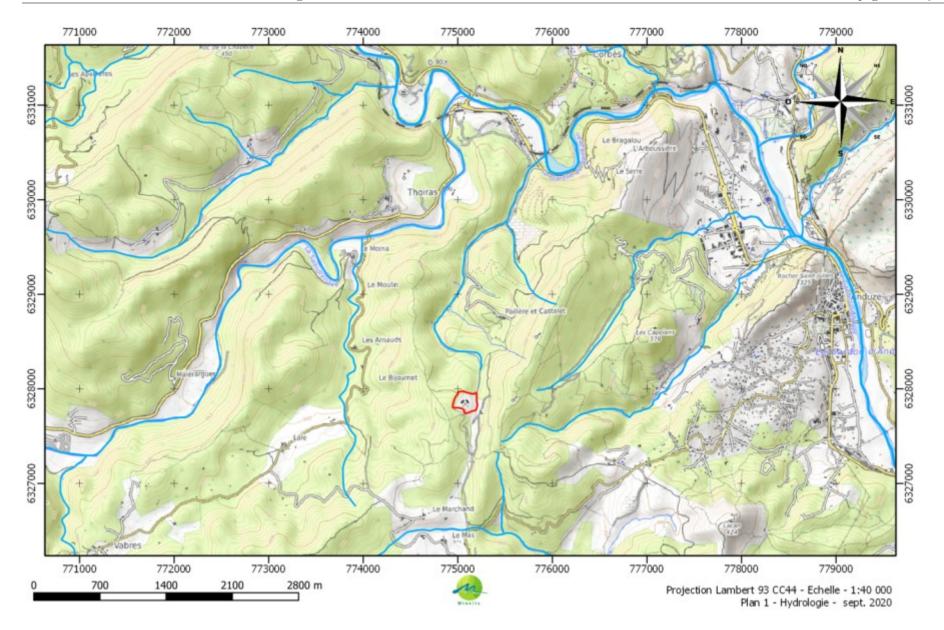


Figure 1 : Carte de situation au 1 :40 000 du site des anciennes mines de la Vieille Montagne de Saint Félix de Pallières dans son contexte hydrographique sur fond IGN

2 Milieu d'exposition et vecteurs de transfert

2.1 Schéma conceptuel

Le schéma conceptuel de la **Figure 2** résume les transferts possibles de la source de pollution dans les milieux investigués (eaux de surface et sédiments, eaux souterraines, air).

2.2 Sources

Dans le cadre des différentes études réalisées sur le site, les sources de pollution ont été identifiées :

- Présence de métaux sur brut dans la digue provenant d'anciens résidus miniers
- Présence de métaux sur brut sur des sites diffus à proximité de la zone d'études

2.3 Milieux et transferts

Les principaux transferts de polluants au sein et à l'extérieur du site pourraient être les suivants :

- Ruissellement des eaux chargées vers les points bas ;
- Transport éolien : Retombées atmosphériques de polluants présents dans l'atmosphère.
- Lixiviation dans les sols, puis migration vers la nappe phréatique ;
- Transfert de polluants au sein de la nappe phréatique, puis migration vers les eaux de surface.

Les milieux investigués sont les eaux de surface, les sédiments, les eaux souterraines et les retombées de poussières.

2.4 Enjeux à protéger

Compte tenu de la nature des polluants, de la configuration du site et de l'environnement, les enjeux à protéger sont :

- Les ouvriers ;
- Les riverains ;
- Et les cours d'eau.

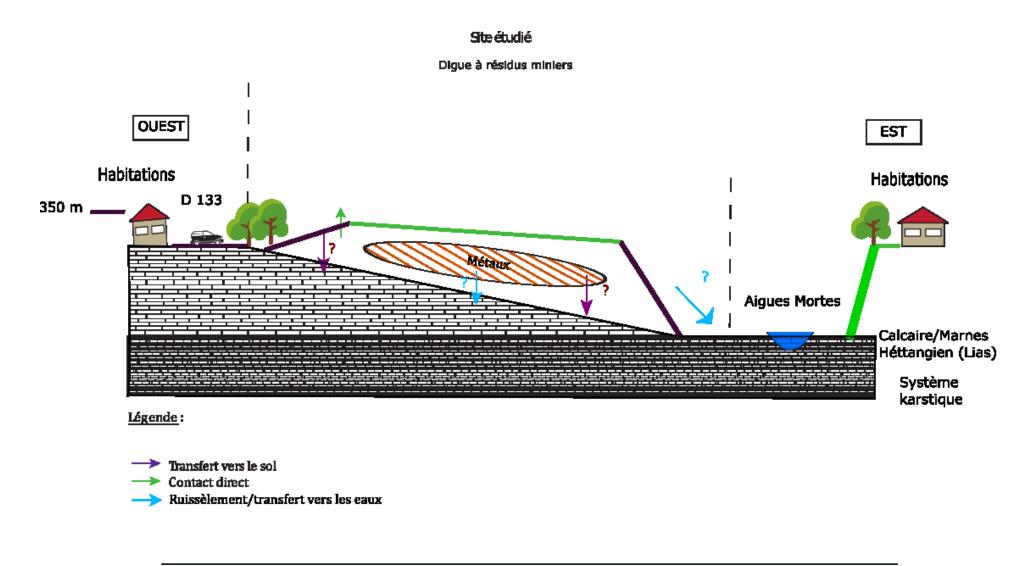


Figure 2 : Schéma conceptuel digue de Saint Félix de Pallières

3 Suivi des eaux et sédiments

Afin de suivre l'impact de la réhabilitation du site sur le milieu naturel, le réseau de surveillance des eaux de surface, des eaux souterraines et des sédiments a été mis en place en lien avec la DDTM et conformément à la prescription de l'arrêté préfectoral. Ce réseau est constitué de 5 points de mesures répartis en aval de la digue à résidus miniers.

Les eaux et sédiments sont contrôlés aux endroits suivants :

- AVAL-DIGUE : avant la jonction avec l'écoulement en provenance des haldes au niveau du bassin de décantation provisoire ;
- AVAL_HALDES: après la jonction avec l'Aigues Mortes récupérant les écoulements des haldes;
- AVAL_AIGUES: à 1,2 km à l'aval de la digue;
- SORTIE_BASSIN : un point dans le vallon nord dans lequel les eaux du bassin de régulation sont rejetées ;
- BIJOURNET : point de résurgence de la source du Bijournet (Ouest de la digue).

Il est à noter que, par le régime hydrique de la région, la présence d'eau dans les cours d'eau n'est pas toujours garantie. Ainsi il peut y avoir des variations sur le nombre d'échantillons réalisés en fonction des campagnes.

Les analyses portent sur l'antimoine (Sb), l'arsenic (As), le plomb (Pb), le cadmium (Cd), le chrome (Cr), le cuivre (Cu), le nickel (Ni), le zinc (Zn), le mercure (Hg), les cyanures totaux et aisément libérables et le Carbone Organique Total (COT). Les paramètres physico-chimiques, pH et conductivité, sont mesurés in situ et en laboratoire.

La localisation des points de prélèvements a été recalée d'après le relevé GPS effectué lors de la campagne du mois de mars.

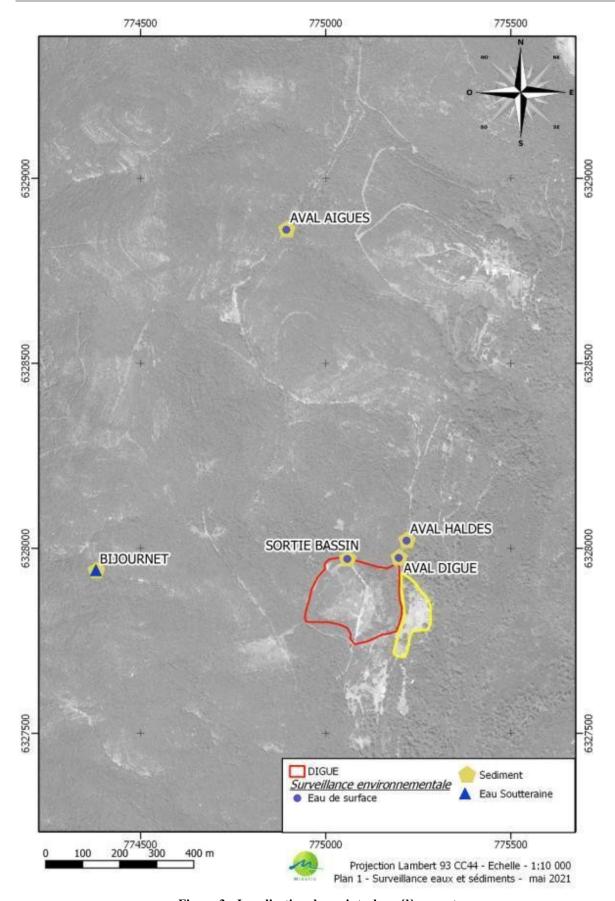


Figure 3 : Localisation des points de prélèvements

3.1 Valeurs de référence

Conformément à l'arrêté préfectoral n°30-2020-06-24-002 et notamment à l'article 3.4, les valeurs de références sont définies en fonction :

- (1) Arrêté du 17 décembre 2008 établissant les critères d'évaluation et les modalités de détermination de l'état des eaux souterraines et des tendances significatives et durables de dégradation de l'état chimique des eaux souterraines complété par la circulaire du 23 octobre 2012 et modifié par l'arrêté du 23 juin 2016;
- (2) Guide INERIS DRC-17-164559-10404A version du 13 mars 2018 : **NQE-CMA des eaux de surface intérieures** définie par **l'arrêté du 25 janvier 2010 relatif** aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface pris en application des articles R. 212-10, R. 212-11 et R. 212-18 du code de l'environnement modifié par l'arrêté du 28 juin 2016 ;
- (3) **Arrêté du 9 août 2006** modifié par l'arrêté du 30 juin 2020 relatif aux niveaux à prendre en compte lors d'une analyse de rejets dans les eaux de surface ou de sédiments marins, estuariens ou extraits de cours d'eau ou canaux relevant respectivement des rubriques 2.2.3.0, 4.1.3.0 et 3.2.1.0 de la nomenclature annexée à l'article R. 214-1 du code de l'environnement : **Tableau IV pour la qualité des sédiments extraits de cours d'eau ou de canaux** ;
- (4) Lorsque **aucune valeur de référence** n'est définie pour les paramètres analysés, les données obtenues pendant la **campagne initiale d'avant travaux (26 juin 2020) serviront de références.**

Les valeurs des échantillons non filtrés ne peuvent être comparées au référentiel NQE-CMA⁽²⁾ qui est défini sur les formes dissoutes, notamment pour les métaux. Les analyses réalisées sur brut serviront de valeurs de référence pour discuter des variations observées en fonction des campagnes de prélèvements. Ces valeurs serviront également à définir l'état initial avant travaux afin de mesurer les potentiels impacts du chantier sur l'environnement.

pour

20

3.1.1 Valeurs de références pour les eaux

Voici le tableau des valeurs servant de références pour les eaux de surface (ESU) et les eaux souterraines (ESO) :

		ESU (2)	ESO (1)	
Paramètres	Unités	E3U	E30	
Arsenic (As)	μg/l	ND	10	
Cadmium (Cd)	μg/l	0,45	5	
Chrome (Cr)	μg/l	ND	50**	
Cuivre (Cu)	μg/l	ND	2000**	
Nickel (Ni)	μg/l	34	20**	
Plomb (Pb)	μg/l	14	10	
Zinc (Zn)	μg/l	ND	5000**	
Mercure (Hg)	μg/l	0,07	1	
Antimoine (Sb)	μg/l	ND	5**	
Fer (Fe)	mg/l	ND	200**	
сот	mg C/I	ND	ND	
Cyanures aisément libérables	μg/l	ND	50	
Cyanures totaux	μg/l	ND	50	
рН	Unités	ND	9	
Conductivité	μS/cm		1000	

- (1) Arrêté du 17 décembre 2008 établissant les critères d'évaluation et les modalités de détermination de l'état des eaux souterraines et des tendances significatives et durables de dégradation de l'état chimique des eaux souterraines complété par la circulaire du 23 octobre 2012 (mentionné par **) et modifié par l'arrêté du 23 juin 2016;
- (2) Guide INERIS DRC-17-164559-10404A version du 13 mars 2018 : NQE-CMA des eaux de surface intérieures définie par l'arrêté du 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface pris en application des articles R. 212-10, R. 212-11 et R. 212-18 du code de l'environnement modifié par l'arrêté du 28 juin 2016 ;
- o ND: Non défini

La valeur de référence choisie est celle correspondant à une dureté d'eau faible [CaCO3] < 40 mg/l de façon conservatoire. L'analyse de la dureté de l'eau au droit du prélèvement dans l'Aigues-Mortes a été réalisée pour déterminer au mieux le seuil de référence. Les résultats donnent une dureté de 28°F soit 28 mg/l de CaCO3.

3.1.2 Valeurs de références pour les sédiments

Voici le tableau des valeurs servant de références pour les sédiments (SED) :

		SED ⁽³⁾
Paramètres	Unités	2ED
Arsenic (As)	mg/kg M.S.	30
Cadmium (Cd)	mg/kg M.S.	2
Chrome (Cr)	mg/kg M.S.	150
Cuivre (Cu)	mg/kg M.S.	100
Nickel (Ni)	mg/kg M.S.	50
Plomb (Pb)	mg/kg M.S.	100
Zinc (Zn)	mg/kg M.S.	300
Mercure (Hg)	mg/kg M.S.	1
Antimoine (Sb)	mg/kg M.S.	ND
Fer (Fe)	mg/kg M.S.	ND
СОТ	mg/kg M.S.	ND
Cyanures aisément libérables	mg/kg M.S.	ND
Cyanures totaux	mg/kg M.S.	ND
рН	Unités	ND

- (3) Arrêté du 9 août 2006 modifié par l'arrêté du 30 juin 2020 relatif aux niveaux à prendre en compte lors d'une analyse de rejets dans les eaux de surface ou de sédiments marins, estuariens ou extraits de cours d'eau ou canaux relevant respectivement des rubriques 2.2.3.0, 4.1.3.0 et 3.2.1.0 de la nomenclature annexée à l'article R. 214-1 du code de l'environnement : Tableau IV pour la qualité des sédiments extraits de cours d'eau ou de canaux ;
- o ND: Non défini

www.infoclimat.fr

3.2 Données pluviométriques

Les données pluviométriques pour le mois de juin 2021 (source : infloclimat.fr) pour la station de Thoiras située à environ 2 km du chantier sont disponibles dans le graphique suivant :

Températures maxi, mini, précipitations En juin 2021 à Thoiras 40 32 Températures (°C) 8 10 12 14 16 18 20 22 24 30 26 28 Jour du mois Pluie sur 24h Température maximale → Température minimale · Afficher les records de TN

Figure 4 : Relevé pluviométrique de la station de Thoiras (30) pour le mois de juin 2021

· Afficher les records de TX

Le cumul des pluies pour le mois de juin est de 70 mm, principalement enregistrées les 20 et 21 juin 2021, la campagne de prélèvement a été effectuée le 23 juin après les fortes pluies.

MOIS/Jours	1	2	3	4	5 6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Cumul par mois
sept20								15							2			80	2	13				7							119
oct20		5		6	5								1			1			3,5		16,5	55	2	1,5							96,5
nov20									1,5	15			25							2							3				46,5
déc20						1,5	4		4	4			6	67		20	5	60	40	10										3	224,5
janv21				2															2	50	3					1		3			61
févr21	0,5		1,5			11	3,5		10				10		6,5		10	3,5		2,5	26					2					87
mars-21						8							2																		10
avr21										20																2	15	7	20		64
mai-21									116	99						2,5	0,5					2,5									220,5
juin-21		4,5											10,0						35,0	35,0			2,0						2,0		88,5

Figure 5 : Relevé pluviométrique du chantier de septembre 2020 à juin 2021

3.3 Résultats et interprétation des prélèvements

3.3.1 Eaux de surface

Les prélèvements sur les points AIGUES et DIGUE sont réalisés à l'aide d'un bécher en PE. Une partie des échantillons est filtrée à $0,45~\mu m$ pour l'analyse des métaux dissous. L'analyse sur brut est également effectuée. Les autres points d'eau de surface n'ont pas pu être prélevés compte tenu des l'assèchement des ruisseaux.

Paramètres	Unités	LQ	(2)	Aigues	Aigues filtrée	Digue	Digue filtrée
Antimoine (Sb)	μg/l	0,20	ND	0,93	0,68	22	1,05
Arsenic (As)	μg/l	0,20	ND	4,24	1,99	118	2,66
Cadmium (Cd)	μg/l	0,20	0,45	1,75	1,14	77,9	35,9
Chrome (Cr)	μg/l	0,50	ND	<0,50	<0,50	4	<0,50
Cuivre (Cu)	μg/l	0,50	ND	1,59	0,9	90,4	2,05
Nickel (Ni)	μg/l	2,00	34	<2,00	<2,00	11,6	4
Plomb (Pb)	μg/l	0,50	14	58,4	10,5	2700	32,5
Zinc (Zn)	μg/l	5,00	ND	312	151	15500	5120
Mercure (Hg)	μg/l	0,01	0,07	<0,01	<0,01	<0,01	0,02*
Fer (Fe)	μg/l	1,00	ND	160	5,7	8700	120
СОТ	mg C/I	0,50	ND	2,5		5,2	
Cyanures aisément libérables	μg/l	10,00	ND	<10		<10	
Cyanures totaux	μg/l	10,00	ND	<10		<10	
рН	рН			8,3		7,8	
Conductivité	μS/cm			582		2330	

Tableau 1 : Résultats d'analyse des prélèvements les eaux de surface de la campagne du 23 juin 2021 (*) Il est observé une teneur sur échantillon filtrée légèrement supérieure à celle sur brut pour le Mercure. Les ordres de grandeur étant identiques, on peut ainsi considérer que cet élément est intégralement sous forme dissoute.

Au droit d'AVAL_AIGUES la concentration en cadmium sur eau filtrée (1,14 μ g/l) dépasse les valeurs de références des NQE-CMA (0,45 μ g/l) définies par (2) par l'arrêté du 25 janvier 2010.

Au droit d'AVAL_DIGUE les concentrations en cadmium (35,9 μ g/l) et plomb (32,5 μ g/l) sur eau filtrée dépassent les valeurs de références des NQE-CMA (respectivement 0,45 μ g/l et 14 μ g/l) définies par (2) par l'arrêté du 25 janvier 2010.

Il est à noter que le prélèvement AVAL_DIGUE a été effectué dans des eaux stagnantes présentant un surnageant fortement chargé en matières en suspension. Le prélèvement est effectué dans le bassin de décantation provisoire du chantier, il n'y avait pas d'écoulement d'eau le jour du prélèvement.

3.3.2 Eaux souterraines

Les prélèvements sur le point BIJOURNET sont réalisés à l'aide d'un bécher en PE. Une partie des échantillons est filtrée à $0.45~\mu m$ pour l'analyse des métaux dissous. L'analyse sur brut est également effectuée.

Paramètres	Unités	LQ	(1)	Bijournet	Bijournet filtrée
Antimoine (Sb)	μg/l	0,20	5**	0,38	0,35
Arsenic (As)	μg/l	0,20	10	9,36	3,15
Cadmium (Cd)	μg/l	0,01	5	1	0,89
Chrome (Cr)	μg/l	0,50	50**	<0,50	<0,50
Cuivre (Cu)	μg/l	0,50	2000**	<0,50	<0,50
Nickel (Ni)	μg/l	2,00	20**	9,2	9,4*
Plomb (Pb)	μg/l	0,50	10	<0,50	<0,50
Zinc (Zn)	μg/l	5,00	5000**	1920	1900
Mercure (Hg)	μg/l	0,20	1	<0,10	<0,10
Fer (Fe)	μg/l	1,00	200**	990	2,5
СОТ	mg C/I	0,50	ND	1,5	
Cyanures aisément libérables	μg/l	10,00	50	<10	
Cyanures totaux	μg/l	10,00	50	<10	
рН	рН		9	7,6	
Conductivité	μS/cm		1000	1610	

Tableau 2 : Résultats d'analyse des prélèvements d'eaux souterraines de la campagne du 23 juin 2021 (*) Il est observé une teneur sur échantillon filtrée légèrement supérieure à celle sur brut pour le Nickel. L'ordre de grandeur étant identique, on peut ainsi considérer que cet élément est intégralement sous forme dissoute.

La concentration en Fer (990 μ g/l) dépasse la valeur de référence (soit 200 μ g/l) définie par (1) l'arrêté du 17 décembre 2008 complété par la circulaire du 23 octobre 2012 et modifié par l'arrêté du 23 juin 2016.

La conductivité (1 610 μ s/cm) dépasse également la valeur de référence (1 000 μ s/cm) définie par (1) l'arrêté du 17 décembre 2008 complété par la circulaire du 23 octobre 2012 et modifié par l'arrêté du 23 juin 2016.

3.3.3 Sédiments

Les prélèvements sur les points SED_AVAL_AIGUES, SED_AVAL_DIGUE, SED_AVAL_HALDES, SED_SORTIE_BASSIN et SED_BIJOUNET sont réalisés à l'aide d'une pelle à main.

Daman Stare	11-24-6-	10	(2)			SED		
Paramètres	Unités	LQ	(3)	SORTIE_BASSIN	AVAL_DIGUE	AVAL_HALDES	AVAL_AIGUES	BIJOURNET
Antimoine (Sb)	mg/kg M.S.	1,0	ND	20,2	29,7	53,1	66,4	16,7
Arsenic (As)	mg/kg M.S.	1,0	30	230	325	465	505	319
Cadmium (Cd)	mg/kg M.S.	0,4	2	19,2	33,3	31	55,5	22,1
Chrome (Cr)	mg/kg M.S.	5,0	150	16,9	5,99	6,13	15	18,1
Cuivre (Cu)	mg/kg M.S.	5,0	100	32,4	34,7	67,8	136	45,6
Fer (Fe)	mg/kg M.S.	5,0	ND	39900	44800	53400	63300	50400
Nickel (Ni)	mg/kg M.S.	1,0	50	13,7	5,12	6,05	14,9	45
Plomb (Pb)	mg/kg M.S.	5,0	100	1330	1550	4620	7390	1080
Zinc (Zn)	mg/kg M.S.	5,0	300	6050	7330	6190	15600	8440
Mercure (Hg)	mg/kg M.S.	0,1	1	0,87	1,13	2,46	4,62	0,64
СОТ	mg/kg M.S.	1000,0	ND	61200	54900	40700	31300	26900
Cyanures aisément libérables	mg/kg M.S.	0,5	ND	<0,5	<0,5	<0,5	<0,5	<0,5
Cyanures totaux	mg/kg M.S.	0,5	ND	<0,5	<0,5	<0,5	<0,5	<0,5
Conductivité	μS/cm		ND	264	1080	481	891	500
рН	Unité pH		ND	8	8,1	8,2	8,1	8,4

Tableau 3 : Résultats d'analyses des prélèvements de sédiments de la campagne du 23 juin 2021.

Les concentrations en As, Cd, Pb et Zn dépassent les valeurs de références (respectivement 30, 2, 100 et 300 mg/kg M.S.) définies par (3) l'arrêté du 9 août 2006 modifié par l'arrêté du 30 juin 2020 pour l'ensemble des échantillons.

Les concentrations en Hg dépassent la valeur de référence (1 mg/kg M.S.) définie par (3) l'arrêté du 9 août 2006 modifié par l'arrêté du 30 juin 2020 pour les prélèvements AVAL_AIGUES, AVAL_HALDES et AVAL_DIGUE.

La concentration en Cu dépasse la valeur de référence (100 mg/kg M.S.) définie par (3) l'arrêté du 9 août 2006 modifié par l'arrêté du 30 juin 2020 pour le prélèvement AVAL_AIGUES.

pour

26

3.3.4 Comparaison du ratio Cd/Zn pour la matrice sédiment

Le rapport des teneurs entre deux métaux lourds, permet, dans une certaine mesure, de relier des échantillons à une potentielle source de pollution. Le tableau suivant donne les rapports des teneurs en cadmium sur les teneurs en zinc pour les 5 prélèvements et le résidu minier présent au droit de la digue.

	SORTIE_BASSIN	AVAL_DIGUE	AVAL_HALDES	AVAL_AIGUES	BIJOURNET	DIGUE
Cadmium/ Zinc en %	0,317	0,454	0,501	0,356	0,262	0,454

Tableau 4 : Ratio des teneurs en Cadmium sur les teneurs en Zinc pour la matrice sédiment.

On remarque que les ratios Cd/Zn pour les échantillons AVAL_AIGUES, AVAL_DIGUE, AVAL_HALDES et SORTIE_BASSIN sont quasi similaires, environ 0,45 %. On remarque le ratio Cd/Zn pour l'échantillon du BIJOURNET (0,262 %) se distingue toujours significativement des 4 autres points de prélèvement.

De manière générale, ces différences mettent en évidence 2 signatures distinctes d'échantillons :

- Ceux prélevés en aval hydraulique de la digue, dont les ratios Cd/Zn sont similaires entre eux.
- Les sédiments de la source du Bijournet, dont l'impact potentiel est lié à des circulations souterraines non maîtrisées qui possèdent un ratio Cd/Zn qui diffère des autres prélèvements.

3.4 Comparaisons avec les campagnes précédentes

3.4.1 Eaux souterraines

Dans le cadre du suivi environnemental du chantier de réhabilitation de la digue à résidus, des campagnes de prélèvements des eaux sont effectuées chaque mois. Les résultats de ces campagnes sont comparés afin de vérifier l'impact potentiel des travaux sur l'environnement.

Le graphique qui suit présente les variations des teneurs en fonction des campagnes de juin 2020 à juin 2021.

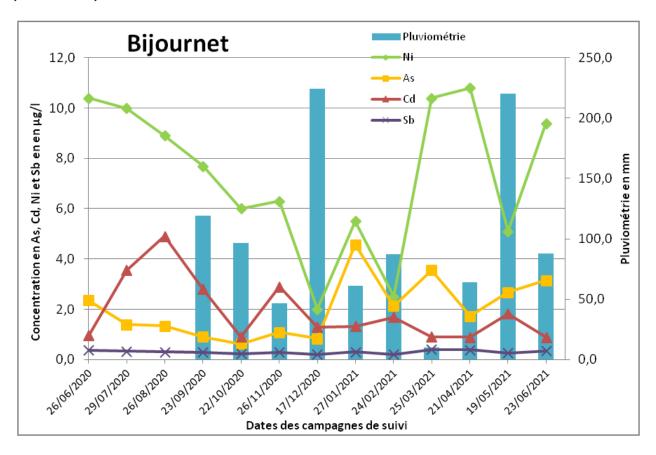


Figure 6 : Comparaison des concentrations en métaux (sur dissous) en fonction des campagnes au droit de la source du Bijournet

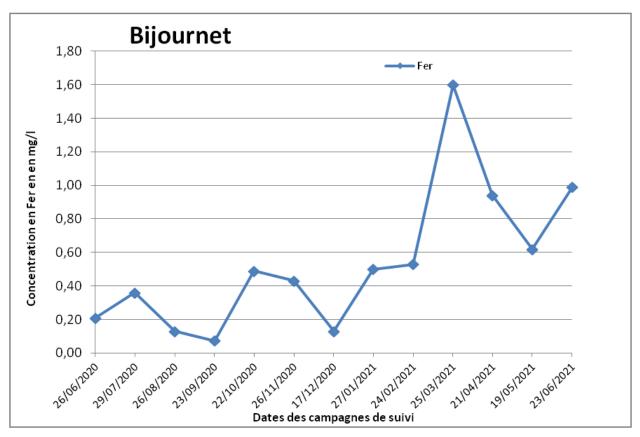


Figure 7 : Comparaison des concentrations en Fer (sur eau brute) en fonction des campagnes au droit de la source du Bijournet

De manière générale les concentrations en métaux lourds analysés dans la source du Bijournet apparaissent stables entre les campagnes de juin 2020 à juin 2021.

Il est à noter cependant de faibles variations des concentrations liées à la pluviométrie. En effet, lors de fortes précipitations des phénomènes de dilution ont lieu et entraînent une diminution des concentrations en métaux lourds analysés.

3.4.2 Eaux de surface

Dans le cadre du suivi environnemental du chantier de réhabilitation de la digue à résidus, des campagnes de prélèvements des eaux de surface sont effectuées chaque mois, quand la situation hydrique le permet. Les résultats de ces campagnes sont comparés afin de vérifier l'impact potentiel des travaux sur l'environnement.

Le graphique qui suit présente les variations des teneurs en fonction des campagnes de juin 2020 à juin 2021.

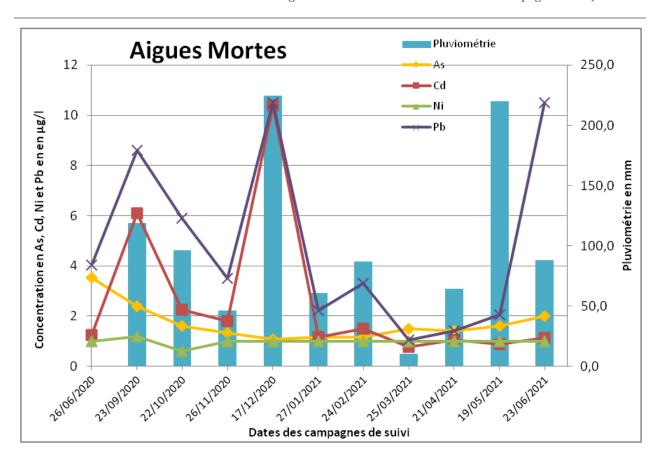


Figure 8 : Comparaison des concentrations en métaux (sur dissous) en fonction des campagnes au droit de l'Aigues-Mortes

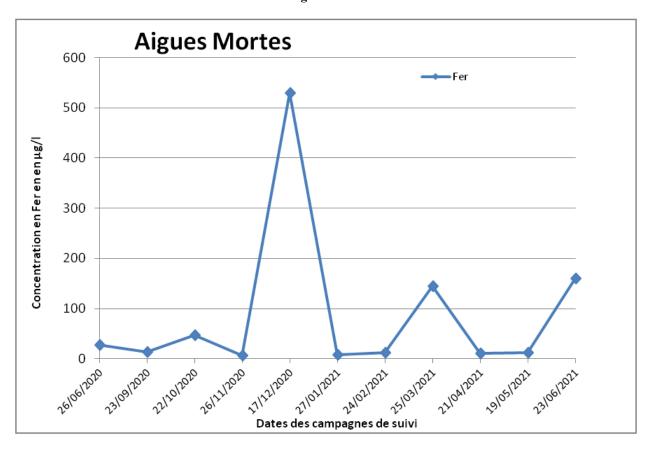


Figure 9 : Comparaison des concentrations en Fer (sur eau brute) en fonction des campagnes au droit de l'Aigues-Mortes

Les concentrations métaux lourds analysés semblent stables depuis le mois de janvier, a l'exception de la concentration en plomb qui a fortement augmentée lors de la campagne du mois de juin. Compte tenu des conditions hydrologiques de la région, les cours d'eau semblent être fortement influencés par la pluviométrie des derniers jours et le changement de régime peut s'effectuer subitement (en quelques heures). Ces changements soudains de régime hydrologique semblent expliquer les variations de concentrations constatées entre les campagnes. L'évolution de la concentration en plomb sera en particulier à suivre au cours des prochaines campagnes.

3.4.3 Sédiments

Dans le cadre du suivi environnemental du chantier de réhabilitation de la digue à résidus, des campagnes de prélèvements de sédiments sont effectuées chaque mois. Les résultats de ces campagnes sont comparés entre eux afin de vérifier l'impact potentiel des travaux sur l'environnement.

Les tableaux qui suivent, comparent les concentrations en métaux de la matrice sédiment des campagnes de mars à juin 2021 (L'ensemble des résultats depuis juin 2020 sont ressemblés en ANNEXE 1). Une plage de valeurs de référence a été déterminée, avant l'ouverture du dépôt des résidus miniers afin de pouvoir comparer les résultats après le démarrage des travaux de reprofilage et de confinement de la digue.

Il est à noter que les travaux de terrassements pour le remodelage de la digue ont débuté le 13 avril. Les terrassements des talus ont été terminés le 11 juin 2021, le reprofilage du plateau sommital était en cours lors de la campagne du mois de juin.

		•				Plage de référence de juin à décemb 2020						
Paramètres	Unités	25/03/2021	21/04/2021	19/05/2021	23/06/2021	Moyenne	Min	Max				
rarametres	Offices				ORTIE BASSIN	I						
Antimoine (Sb)	mg/kg M.S.	18,3	13,7	19,3	20,2	10,2	2,09	26,7				
Arsenic (As)	mg/kg M.S.	190	172	223	230	118	17,8	317				
Cadmium (Cd)	mg/kg M.S.	12,3	11,2	12,6	19,2	4,98	0,75	13,5				
Chrome (Cr)	mg/kg M.S.	25,1	17,3	25,3	16,9	17,0	12,2	29,5				
Cuivre (Cu)	mg/kg M.S.	20,8	19,2	24,4	32,4	14,3	8,8	24,6				
Fer (Fe)	mg/kg M.S.	49200	38500	43900	39900	29514	16000	59900				
Nickel (Ni)	mg/kg M.S.	19	11,8	23,8	13,7	16,1	12,3	22,4				
Plomb (Pb)	mg/kg M.S.	757	835	848	1330	295	34,2	727				
Zinc (Zn)	mg/kg M.S.	3100	3230	4050	6050	966	136	2800				
Mercure (Hg)	mg/kg M.S.	0,43	0,53	0,52	0,87	0,23	0,10	0,65				

Tableau 5 : Synthèse des résultats et plage de valeurs de référence – SORTIE BASSIN

						Plage de réf	érence de juin	à décembre
							2020	
Paramètres	Unités	25/03/2021	21/04/2021	19/05/2021	23/06/2021	Moyenne	Min	Max
Parametres	Offices				AVAL DIGUE			
Antimoine (Sb)	mg/kg M.S.	62,8	57,1	71,6	29,7	78,4	46,5	100
Arsenic (As)	mg/kg M.S.	556	506	1260	325	759	388	1060
Cadmium (Cd)	mg/kg M.S.	62,4	44,1	41,6	33,3	48,8	31,3	61,1
Chrome (Cr)	mg/kg M.S.	20,7	17,5	<5,00	5,99	10,6	5	17,8
Cuivre (Cu)	mg/kg M.S.	143	144	60	34,7	164,0	109	273
Fer (Fe)	mg/kg M.S.	80900	75800	123000	44800	104500	69700	138000
Nickel (Ni)	mg/kg M.S.	24,5	17,7	7,52	5,12	13,0	10,1	19,2
Plomb (Pb)	mg/kg M.S.	7040	6930	3330	1550	9847	3410	15800
Zinc (Zn)	mg/kg M.S.	10800	10900	9180	7330	10224	7370	12200
Mercure (Hg)	mg/kg M.S.	3,19	3,3	1,93	1,13	3,05	1,88	4,65

Tableau 6 : Synthèse des résultats et plage de valeurs de référence – AVAL_DIGUE

				Plage de référence de juin à décembre 2020				
Daramàtros	Unités	25/03/2021	21/04/2021	19/05/2021	23/06/2021	Moyenne	Min	Max
Paramètres	Unites				AVAL HALDES			
Antimoine (Sb)	mg/kg M.S.	42,3	43,5	80,7	53,1	106	77,4	206
Arsenic (As)	mg/kg M.S.	380	416	1030	465	667	581	836
Cadmium (Cd)	mg/kg M.S.	22,4	23,8	38,4	31	34,1	29,8	41,1
Chrome (Cr)	mg/kg M.S.	14,7	13,2	<5,00	6,13	13,7	11,2	17,4
Cuivre (Cu)	mg/kg M.S.	96,9	87,6	89,1	67,8	327	234	493
Fer (Fe)	mg/kg M.S.	73400	66900	100000	53400	97071	84500	111000
Nickel (Ni)	mg/kg M.S.	14,6	12,2	8,5	6,05	12,1	10,1	16,1
Plomb (Pb)	mg/kg M.S.	3270	3990	3470	4620	10813	7350	12800
Zinc (Zn)	mg/kg M.S.	5460	3730	10900	6190	7819	5900	9880
Mercure (Hg)	mg/kg M.S.	1,97	1,91	2,09	2,46	3,85	3,10	4,73

Tableau 7 : Synthèse des résultats et plage de valeurs de référence – AVAL_HALDES

				Plage de référence de juin à décembre 2020					
Paramètres	Unités	25/03/2021	21/04/2021	19/05/2021	23/06/2021	Moyenne	Min	Max	
Parametres	Offices				AVAL AIGUES				
Antimoine (Sb)	mg/kg M.S.	115	73,8	27,3	66,4	94,9	64,4	139	
Arsenic (As)	mg/kg M.S.	693	485	233	505	735	538	967	
Cadmium (Cd)	mg/kg M.S.	36,2	17,3	29,5	55,5	30,6	18,5	39	
Chrome (Cr)	mg/kg M.S.	15,6	12,9	5,76	15	13,8	10,1	19,3	
Cuivre (Cu)	mg/kg M.S.	115	113	38,7	136	155	106	199	
Fer (Fe)	mg/kg M.S.	92300	70100	33500	63300	96614	74200	116000	
Nickel (Ni)	mg/kg M.S.	10,4	6,53	4,83	14,9	13,0	9,34	18,1	
Plomb (Pb)	mg/kg M.S.	8950	3280	1480	7390	6473	2640	10600	
Zinc (Zn)	mg/kg M.S.	4660	3960	5140	15600	6820	4420	8560	
Mercure (Hg)	mg/kg M.S.	3,34	2,09	1,14	4,62	3,30	2,20	4,00	

Tableau 8 : Synthèse des résultats et plage de valeurs de référence – AVAL_AIGUES

				•		Plage de réf	érence de juin 2020	à décembre
Paramètres	Unités	25/03/2021	21/04/2021	19/05/2021	23/06/2021	Moyenne	Min	Max
Parametres	Offices				BIJOURNET			
Antimoine (Sb)	mg/kg M.S.	4,42	13,6	7,96	16,7	10,9	3,74	17,3
Arsenic (As)	mg/kg M.S.	924	926	443	319	404	188	542
Cadmium (Cd)	mg/kg M.S.	40,7	24,5	27,3	22,1	19,1	15,3	23,9
Chrome (Cr)	mg/kg M.S.	23	19,7	29,5	18,1	24,8	17,5	28,4
Cuivre (Cu)	mg/kg M.S.	42,7	42,8	56,7	45,6	39,8	22,6	69
Fer (Fe)	mg/kg M.S.	160000	153000	85000	50400	78871	56600	103000
Nickel (Ni)	mg/kg M.S.	106	94,1	90,9	45	91,7	48,9	142
Plomb (Pb)	mg/kg M.S.	447	396	414	1080	539	367	773
Zinc (Zn)	mg/kg M.S.	18100	18300	12200	8440	16937	6280	29600
Mercure (Hg)	mg/kg M.S.	0,24	0,21	0,28	0,64	0,33	0,17	0,59

Tableau 9 : Synthèse des résultats et plage de valeurs de référence – BIJOURNET

Concernant l'évolution des concentrations en métaux lourds analysés dans la matrice sédiment entre les différentes campagnes depuis juin 2020, il est à noter principalement que:

- Au droit de la source du BIJOURNET, les concentrations en métaux lourds ont tendance à être stables au cours des campagnes de prélèvements. Il est à noter pour la campagne de juin 2021 des concentrations en plomb et mercure supérieures aux valeurs définies dans la plage de référence. L'évolution des ces paramètres est à suivre lors des prochaines campagnes.
- Au droit d'AVAL_DIGUE et d'AVAL HALDES le pic de teneur en Arsenic observé lors de la précédente campagne n'a pas été enregistré pour le mois du juin. Le prélèvement AVAL DIGUE est effectué au droit du bassin de décantation provisoire en aval de la digue, l'emplacement du point de prélèvement peut être modifié en fonction du niveau d'eau du bassin ou selon l'avancée du chantier.
- Au droit d'AVAL_AIGUES les concentrations en métaux lourds ont tendance à être stables au cours des campagnes de prélèvements. Les fortes teneurs en arsenic observées lors de la précédente campagne (au droit d'AVAL_DIGUE et d'AVAL_HALDES) n'ont pas été enregistrées en aval dans l'Aigues Mortes. Cependant, lors de la campagne du 23 juin 2021 l'Arsenic et le Fer sont en augmentation, ces teneurs restent dans l'intervalle de valeurs définies avant l'ouverture des résidus.
- Au droit de SORTIE_BASSIN, les concentrations en métaux lourds restent dans les mêmes ordres de grandeurs au cours des campagnes de prélèvements. Ces variations de concentrations observées semblent liées à l'hétérogénéité du sol au droit du prélèvement. En effet, le prélèvement est effectué en lisière de forêt au Nord de la zone de l'emprise du chantier.

Compte tenu des conditions climatiques de la région, le régime hydrologique des cours d'eau est contrasté entre étiage sévère et épisodes cévenols. Ainsi, l'intensité des phénomènes pluvieux peut engendrer des crues éclair et des phénomènes de lessivage des

sols, chargeant et remobilisant des éléments présents dans les sédiments et dans les sols de surface. L'évolution des concentrations en arsenic au droit d'AVAL_DIGUE, HALDES et AIGUES sera particulièrement suivie au cours de prochaines campagnes.

De plus, la réalisation des travaux de terrassement pour le remodelage de la digue a débuté au cours du mois d'avril, les travaux de terrassements étaient finalisés au droit des talus mais en cours sur le plateau sommital lors de la campagne de juin. Cette campagne de prélèvement peut être considérée comme la troisième campagne alors que le dépôt des anciens résidus miniers est partiellement ouvert.

4 Préconisation

Afin de limiter les impacts du chantier sur l'environnement, il est préconisé de bien veiller au respect des prescriptions de l'arrêté préfectoral n° 30-2020-2006-24-002.

pour

5 CONCLUSION

Eaux de surface

Les résultats de la campagne de juin 2021 ne montrent pas d'impact significatif pour les eaux de surface au droit de l'Aigues-Mortes en aval de la digue pour les paramètres analysés. Seule la concentration en cadmium pour l'échantillon AVAL_AIGUES (1,14 μ g/l) filtrée est supérieure à la valeur de référence (0,45 μ g/l) définie par (2) par l'arrêté du 25 janvier 2010. Il est tout de même à noter une augmentation en plomb lors de cette campagne.

En revanche, au droit d'AVAL_DIGUE les concentrations en cadmium (35,9 μ g/l) et plomb (32,5 μ g/l) sur eau filtrée dépassent les valeurs de références des NQE-CMA (respectivement 0,45 μ g/l et 14 μ g/l) définies par (2) par l'arrêté du 25 janvier 2010.

Les autres points surveillés n'ont pas pu être prélevés compte tenu de l'assèchement des cours d'eau.

Eaux souterraines

Au droit de la source du BIJOURNET, la concentration en Fer (990 μ g/l) dépasse la valeur de référence (200 μ g/l) définies par (1) l'arrêté du 17 décembre 2008 complété par la circulaire du 23 octobre 2012 et modifié par l'arrêté du 23 juin 2016.

De manière générale les concentrations en métaux lourds analysés dans la source du Bijournet apparaissent stables entre les campagnes de juin 2020 à juin 2021.Il est à noter cependant de faibles variations des concentrations liées à la pluviométrie.

<u>Sédiments</u>

Les résultats de la campagne de juin 2021, à l'image des campagnes précédentes, montrent un impact notamment en métaux lourd sur les sédiments analysés.

- Au droit de la source du BIJOURNET, les concentrations en métaux lourds ont tendance à être stables au cours des campagnes de prélèvements. Il est à noter pour la campagne de juin 2021 des concentrations en plomb et mercure supérieures aux valeurs définies dans la plage de référence. L'évolution des ces paramètres est à suivre lors des prochaines campagnes.
- Au droit d'AVAL_DIGUE et d'AVAL HALDES le pic de teneur en Arsenic observé lors de la précédente campagne n'a pas été enregistré pour le mois du juin. Le prélèvement AVAL DIGUE est effectué au droit du bassin de décantation provisoire en aval de la digue, l'emplacement du point de prélèvement peut être modifié en fonction du niveau d'eau du bassin ou selon l'avancée du chantier.
- Au droit d'AVAL_AIGUES les concentrations en métaux lourds ont tendance à être stables au cours des campagnes de prélèvements. Les fortes teneurs en arsenic observées lors de la précédente campagne (au droit d'AVAL_DIGUE et d'AVAL_HALDES) n'ont pas été enregistrées en aval dans l'Aigues Mortes. Cependant,

lors de la campagne du 23 juin 2021 l'Arsenic et le Fer sont en augmentation, ces teneurs restent dans l'intervalle de valeurs définies avant l'ouverture des résidus.

- Au droit de SORTIE_BASSIN, les concentrations en métaux lourds restent dans les mêmes ordres de grandeurs au cours des campagnes de prélèvements. Ces variations de concentrations observées semblent liées à l'hétérogénéité du sol au droit du prélèvement. En effet, le prélèvement est effectué en lisière de forêt au Nord de la zone de l'emprise du chantier.

Compte tenu des conditions climatiques de la région, le régime hydrologique des cours d'eau est contrasté entre étiage sévère et épisodes cévenols. Ainsi, l'intensité des phénomènes pluvieux peut engendrer des crues éclair et des phénomènes de lessivage des sols, chargeant et remobilisant des éléments présents dans les sédiments et dans les sols de surface. L'évolution des concentrations en arsenic au droit d'AVAL_DIGUE, HALDES et AIGUES sera particulièrement suivie au cours de prochaines campagnes.

De plus, la réalisation des travaux de terrassement pour le remodelage de la digue a débuté au cours du mois d'avril, les travaux de terrassements étaient finalisés au droit des talus mais en cours sur le plateau sommital lors de la campagne de juin. Cette campagne de prélèvement peut être considérée comme la troisième campagne alors que le dépôt des anciens résidus miniers est partiellement ouvert.

ANNEXES

ANNEXE 1	Synthèse des résultats sur la matrice sédiment	40
ANNEXE 2	: Normes et limites analytiques sur matrice eau	41
ANNEXE 3	: Normes et limites analytiques sur matrice sédiment	43
ANNEXE 4	: Résultats d'analyses	45
ANNEXE 5	: Fiches de prélèvements ESU	46
ANNEXE 6	: Fiches de prélèvements ESO	47
ANNEXE 7	: Fiches de prélèvements SED	48
ANNEXE 8	: Fiche flaconnage	49

ANNEXE 1 Synthèse des résultats sur la matrice sédiment

					1		1				1						
		16/07/2020	20/07/2020	26/08/2020	22/00/2020	22/10/2020	26/11/2020	17/12/2020	27/01/2021	24/02/2021	25/02/2021	21/04/2021	10/05/2021	22/06/2021	Moyenne	Min	Max
Paramètres	Unités	10/07/2020	29/07/2020	20/08/2020	23/09/2020	22/10/2020	20/11/2020	17/12/2020		BASSIN	25/05/2021	21/04/2021	19/05/2021	23/06/2021	woyenne	IVIIII	IVIdX
Antimoine									·	Ī							
(Sb)	mg/kg M.S.	3,65	2,76	2,09	6,09	3,62	26,4	26,7	32	<1,00	18,3	13,7	19,3	20,2	10,19	2,09	26,70
Arsenic (As)	mg/kg M.S.	43,40	53,70	17,80	80,40	33,20	317	278	448	18,9	190	172	223	230	117,6	17,8	317,0
Cadmium								40.4									
(Cd)	mg/kg M.S.	1,95	2,75	0,75	3,73	1,75	13,5	10,4	15	0,4	12,3	11,2	12,6	19,2	4,98	0,75	13,50
Chrome (Cr)	mg/kg M.S.	13,20	12,20	15,70	14,50	16,20	17,7	29,5	17,3	39,7	25,1	17,3	25,3	16,9	17,00	12,20	29,50
Cuivre (Cu)	mg/kg M.S.	8,80	9,34	17,30	9,17	13,90	17,1	24,6	21,1	18,6	20,8	19,2	24,4	32,4	14,32	8,80	24,60
Fer (Fe)	mg/kg M.S.	17700	16800	16000	21400	21500	53300	59900	62800	26600	49200	38500	43900	39900	29514	16000	59900
Nickel (Ni)	mg/kg M.S.	14,20	12,30	21,50	14,70	14,90	13	22,4	15,7	21,1	19	11,8	23,8	13,7	16,14	12,30	22,40
Plomb (Pb)	mg/kg M.S.	130,0	200,0	34,2	248,0	94,8	727	629	1140	36,7	757	835	848	1330	294,7	34,2	727,0
Zinc (Zn)	mg/kg M.S.	419,0	507,0	136,0	830,0	382,0	2800	1690	3910	108	3100	3230	4050	6050	966,3	136,0	2800,0
Mercure (Hg)	mg/kg M.S.	<0,1	0,13	<0,1	<0,1	<0,1	0,65	0,43	0,56	<0,10	0,43	0,53	0,52	0,87	0,23	0,10	0,65
, 6,							-		·	·	·	-		-		•	-
		26/06/2020	20/07/2020	26/08/2020	22/00/2020	22/40/2020	26 /44 /2020	47/42/2020	27/04/2024	24/02/2024	25 (02 (2024	24 /04 /2024	10/05/2021	23/06/2021		B.41	
Paramètres	Unités	26/06/2020	29/07/2020	20/08/2020	23/09/2020	22/10/2020	20/11/2020	17/12/2020		DIGUE	25/05/2021	21/04/2021	19/05/2021	23/06/2021	Moyenne	Min	Max
Antimoine			I		I	1		I	1								1
(Sb)	mg/kg M.S.	80,40	98,60	100,00	65,00	82,00	46,5	76,4	41,3	37,8	62,8	57,1	71,6	29,7	78,41	46,50	100,00
Arsenic (As)	mg/kg M.S.	825,00	1060,00	993,00	606,00	750,00	388	691	357	319	556	506	1260	325	759,0	388,0	1060,0
Cadmium																	
(Cd)	mg/kg M.S.	54,50	57,80	56,90	48,40	61,10	31,3	31,4	24	20,3	62,4	44,1	41,6	33,3	48,77	31,30	61,10
Chrome (Cr)	mg/kg M.S.	7,70	<5,00	<5,00	<5,00	15,70	17,8	17,8	18,1	19,4	20,7	17,5	<5.00	5,99	10,57	5,00	17,80
Cuivre (Cu)	mg/kg M.S.	273,00	226,00	155,00	129,00	119,00	109	137	77,9	52,7	143	144	60	34,7	164,0	109,0	273,0
Fer (Fe)	mg/kg M.S.	138000	132000	117000	81300	85500	69700	108000	57100	51000	80900	75800	123000	44800	104500	69700	138000
Nickel (Ni)	mg/kg M.S.	13,50	10,20	10,10	11,00	10,50	16,4	19,2	18,4	18,6	24,5	17,7	7,52	5,12	12,99	10,10	19,20
Plomb (Pb)	mg/kg M.S.	11300	12600	15800	4840	13900	3410	7080	2890	2650	7040	6930	3330	1550	9847	3410	15800
Zinc (Zn)	mg/kg M.S.	11600	12200	12100	9180	11500	7620	7370	5560	4560	10800	10900	9180	7330	10224	7370	12200
Mercure (Hg)	mg/kg M.S.	2,45	3,53	4,65	2,75	3,66	1,88	2,43	1,72	1,22	3,19	3,3	1,93	1,13	3,05	1,88	4,65
		2,10	0,00	1,000	-,	-,	-,	=,	-,:-	-,	-,	-,-	-,	-,	3,55		,,
			/ /		/ /	/ /								((
Paramètres	Unités	26/06/2020	29/07/2020	26/08/2020	23/09/2020	22/10/2020	26/11/2020	17/12/2020		24/02/2021 HALDES	25/03/2021	21/04/2021	19/05/2021	23/06/2021	Moyenne	Min	Max
A A				1	I	1			AVAL_	HALDES	1						
Antimoine	mg/kg M.S.	206,00	77,40	109,00	78,90	93,90	87,3	89,8	44,8	47,6	42,3	43,5	80,7	53,1	106,0	77,4	206,0
(Sb) Arsenic (As)	ma/ka NA C	720,00	593,00	836,00	581,00	743,00	599	594	432	414	380	416	1030	465	666,6	581,0	936.0
Cadmium	mg/kg M.S.	720,00	393,00	830,00	361,00	743,00	399	394	452	414	360	410	1030	403	666,6	301,0	836,0
(Cd)	mg/kg M.S.	35,90	29,80	36,70	30,70	41,10	33,1	31,3	28,1	25,8	22,4	23,8	38,4	31	34,09	29,80	41,10
	mg/kg M.S.	15.40	11 20	17.40	11.40	15.50	12.6	12.7	14.8	12	14 7	13.2	<5.00	6.13	13 74	11 20	17.40
Chrome (Cr)	mg/kg M.S. mg/kg M.S.	15,40 493	11,20 240	17,40 234	11,40 393	15,50 340	12,6 344	12,7 246	14,8 73.5	12 83	14,7	13,2 87.6	<5.00 89.1	6,13 67.8	13,74 327.1	11,20 234.0	17,40 493.0
	mg/kg M.S. mg/kg M.S. mg/kg M.S.	15,40 493 111000	11,20 240 84500	17,40 234 111000	11,40 393 92300	15,50 340 99800	12,6 344 92000	12,7 246 88900	14,8 73,5 62200	12 83 52900	14,7 96,9 73400	13,2 87,6 66900	<5.00 89,1 100000	6,13 67,8 53400	13,74 327,1 97071	11,20 234,0 84500	17,40 493,0 111000
Chrome (Cr) Cuivre (Cu)	mg/kg M.S.	493	240	234	393	340	344	246	73,5	83	96,9	87,6	89,1	67,8	327,1	234,0	493,0
Chrome (Cr) Cuivre (Cu) Fer (Fe)	mg/kg M.S. mg/kg M.S.	493 111000	240 84500	234 111000	393 92300	340 99800	344 92000	246 88900	73,5 62200	83 52900	96,9 73400	87,6 66900	89,1 100000	67,8 53400	327,1 97071	234,0 84500	493,0 111000
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni)	mg/kg M.S. mg/kg M.S. mg/kg M.S.	493 111000 16,10	240 84500 10,10	234 111000 10,20	393 92300 12,00	340 99800 10,70	344 92000 12,9	246 88900 12,7	73,5 62200 15,1	83 52900 12,3	96,9 73400 14,6	87,6 66900 12,2	89,1 100000 8,5	67,8 53400 6,05	327,1 97071 12,10	234,0 84500 10,10	493,0 111000 16,10
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn)	mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S.	493 111000 16,10 12300 8210	240 84500 10,10 8640 6930	234 111000 10,20 7350 5900	393 92300 12,00 11200 7960	340 99800 10,70 12800 9880	344 92000 12,9 11300 8570	246 88900 12,7 12100 7280	73,5 62200 15,1 3500 5700	83 52900 12,3 3870 5610	96,9 73400 14,6 3270 5460	87,6 66900 12,2 3990 3730	89,1 100000 8,5 3470 10900	67,8 53400 6,05 4620 6190	327,1 97071 12,10 10813 7818,6	234,0 84500 10,10 7350 5900	493,0 111000 16,10 12800 9880
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb)	mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S.	493 111000 16,10 12300	240 84500 10,10 8640	234 111000 10,20 7350	393 92300 12,00 11200	340 99800 10,70 12800	344 92000 12,9 11300	246 88900 12,7 12100	73,5 62200 15,1 3500	83 52900 12,3 3870	96,9 73400 14,6 3270	87,6 66900 12,2 3990	89,1 100000 8,5 3470	67,8 53400 6,05 4620	327,1 97071 12,10 10813	234,0 84500 10,10 7350	493,0 111000 16,10 12800
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn)	mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S.	493 111000 16,10 12300 8210 4,73	240 84500 10,10 8640 6930 3,10	234 111000 10,20 7350 5900 3,48	393 92300 12,00 11200 7960 3,52	340 99800 10,70 12800 9880 3,97	344 92000 12,9 11300 8570 4,16	246 88900 12,7 12100 7280 3,98	73,5 62200 15,1 3500 5700 1,41	83 52900 12,3 3870 5610 2,03	96,9 73400 14,6 3270 5460 1,97	87,6 66900 12,2 3990 3730 1,91	89,1 100000 8,5 3470 10900 2,09	67,8 53400 6,05 4620 6190 2,46	327,1 97071 12,10 10813 7818,6 3,85	234,0 84500 10,10 7350 5900 3,10	493,0 111000 16,10 12800 9880 4,73
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn)	mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S.	493 111000 16,10 12300 8210 4,73	240 84500 10,10 8640 6930 3,10	234 111000 10,20 7350 5900	393 92300 12,00 11200 7960 3,52	340 99800 10,70 12800 9880 3,97	344 92000 12,9 11300 8570 4,16	246 88900 12,7 12100 7280 3,98	73,5 62200 15,1 3500 5700 1,41	83 52900 12,3 3870 5610 2,03	96,9 73400 14,6 3270 5460	87,6 66900 12,2 3990 3730 1,91	89,1 100000 8,5 3470 10900 2,09	67,8 53400 6,05 4620 6190 2,46	327,1 97071 12,10 10813 7818,6	234,0 84500 10,10 7350 5900	493,0 111000 16,10 12800 9880
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres	mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S.	493 111000 16,10 12300 8210 4,73	240 84500 10,10 8640 6930 3,10	234 111000 10,20 7350 5900 3,48	393 92300 12,00 11200 7960 3,52	340 99800 10,70 12800 9880 3,97	344 92000 12,9 11300 8570 4,16	246 88900 12,7 12100 7280 3,98	73,5 62200 15,1 3500 5700 1,41	83 52900 12,3 3870 5610 2,03	96,9 73400 14,6 3270 5460 1,97	87,6 66900 12,2 3990 3730 1,91	89,1 100000 8,5 3470 10900 2,09	67,8 53400 6,05 4620 6190 2,46	327,1 97071 12,10 10813 7818,6 3,85	234,0 84500 10,10 7350 5900 3,10	493,0 111000 16,10 12800 9880 4,73
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine	mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S.	493 111000 16,10 12300 8210 4,73	240 84500 10,10 8640 6930 3,10	234 111000 10,20 7350 5900 3,48	393 92300 12,00 11200 7960 3,52	340 99800 10,70 12800 9880 3,97	344 92000 12,9 11300 8570 4,16	246 88900 12,7 12100 7280 3,98	73,5 62200 15,1 3500 5700 1,41	83 52900 12,3 3870 5610 2,03	96,9 73400 14,6 3270 5460 1,97	87,6 66900 12,2 3990 3730 1,91	89,1 100000 8,5 3470 10900 2,09	67,8 53400 6,05 4620 6190 2,46	327,1 97071 12,10 10813 7818,6 3,85	234,0 84500 10,10 7350 5900 3,10	493,0 111000 16,10 12800 9880 4,73
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb)	mg/kg M.S.	493 111000 16,10 12300 8210 4,73 26/06/2020	240 84500 10,10 8640 6930 3,10 29/07/2020	234 111000 10,20 7350 5900 3,48 26/08/2020	393 92300 12,00 11200 7960 3,52 23/09/2020	340 99800 10,70 12800 9880 3,97 22/10/2020	344 92000 12,9 11300 8570 4,16 26/11/2020	246 88900 12,7 12100 7280 3,98 17/12/2020	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL_ 208	83 52900 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7	96,9 73400 14,6 3270 5460 1,97 25/03/2021	87,6 66900 12,2 3990 3730 1,91 21/04/2021	89,1 100000 8,5 3470 10900 2,09 19/05/2021	67,8 53400 6,05 4620 6190 2,46 23/06/2021	327,1 97071 12,10 10813 7818,6 3,85 Moyenne	234,0 84500 10,10 7350 5900 3,10 Min	493,0 111000 16,10 12800 9880 4,73 Max
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As)	mg/kg M.S.	493 111000 16,10 12300 8210 4,73 26/06/2020 85,00 699,0	240 84500 10,10 8640 6930 3,10 29/07/2020	234 111000 10,20 7350 5900 3,48 26/08/2020	393 92300 12,00 11200 7960 3,52 23/09/2020 67,50 596,0	340 99800 10,70 12800 9880 3,97 22/10/2020	344 92000 12,9 11300 8570 4,16 26/11/2020	246 88900 12,7 12100 7280 3,98 17/12/2020	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL 208 1600	83 52900 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809	96,9 73400 14,6 3270 5460 1,97 25/03/2021	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8	89,1 100000 8,5 3470 10900 2,09 19/05/2021 27,3 233	67,8 53400 6,05 4620 6190 2,46 23/06/2021	327,1 97071 12,10 10813 7818,6 3,85 Moyenne	234,0 84500 10,10 7350 5900 3,10 Min 64,4	493,0 111000 16,10 12800 9880 4,73 Max 139,0
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium	mg/kg M.S.	493 111000 16,10 12300 8210 4,73 26/06/2020	240 84500 10,10 8640 6930 3,10 29/07/2020	234 111000 10,20 7350 5900 3,48 26/08/2020	393 92300 12,00 11200 7960 3,52 23/09/2020	340 99800 10,70 12800 9880 3,97 22/10/2020	344 92000 12,9 11300 8570 4,16 26/11/2020	246 88900 12,7 12100 7280 3,98 17/12/2020	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL_ 208	83 52900 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7	96,9 73400 14,6 3270 5460 1,97 25/03/2021	87,6 66900 12,2 3990 3730 1,91 21/04/2021	89,1 100000 8,5 3470 10900 2,09 19/05/2021	67,8 53400 6,05 4620 6190 2,46 23/06/2021	327,1 97071 12,10 10813 7818,6 3,85 Moyenne	234,0 84500 10,10 7350 5900 3,10 Min	493,0 111000 16,10 12800 9880 4,73 Max
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As)	mg/kg M.S.	493 111000 16,10 12300 8210 4,73 26/06/2020 85,00 699,0	240 84500 10,10 8640 6930 3,10 29/07/2020	234 111000 10,20 7350 5900 3,48 26/08/2020	393 92300 12,00 11200 7960 3,52 23/09/2020 67,50 596,0	340 99800 10,70 12800 9880 3,97 22/10/2020	344 92000 12,9 11300 8570 4,16 26/11/2020	246 88900 12,7 12100 7280 3,98 17/12/2020	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL 208 1600	83 52900 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809	96,9 73400 14,6 3270 5460 1,97 25/03/2021	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8	89,1 100000 8,5 3470 10900 2,09 19/05/2021 27,3 233	67,8 53400 6,05 4620 6190 2,46 23/06/2021	327,1 97071 12,10 10813 7818,6 3,85 Moyenne	234,0 84500 10,10 7350 5900 3,10 Min 64,4	493,0 111000 16,10 12800 9880 4,73 Max 139,0
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd)	mg/kg M.S.	493 111000 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40	240 84500 10,10 8640 6930 3,10 29/07/2020 139,00 967,0 39,00	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20	393 92300 12,00 11200 7960 3,52 23/09/2020 67,50 596,0 25,70	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL 208 1600 26,1	83 52900 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31	96,9 73490 14,6 3270 5460 1,97 25/03/2021 115 693 36,2	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485	89,1 100000 8,5 3470 10900 2,09 19/05/2021 27,3 233 29,5	67,8 53400 6,05 4620 6190 2,46 23/06/2021 66,4 505	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0	493,0 111000 16,10 12800 9880 4,73 Max 139,0 967,0
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr)	mg/kg M.S.	493 111000 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40 12,90	240 84500 10,10 8640 6930 3,10 29/07/2020 139,00 967,0 39,00 19,30	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20 12,90 165,00 74200,00	393 92300 112,00 11200 7960 3,52 23/09/2020 67,50 596,0 25,70 10,10 106,00 85700,00	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3 12,7 172	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5 14,9 120 98600	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL 208 1600 26,1 10,8 164 122000	83 52990 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31 12,8 117 78600	96,9 73490 14,6 3270 5460 1,97 25/03/2021 115 693 36,2 15,6 115 92300	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485 17,3 12,9 113 70100	89,1 100000 8,5 3470 10900 2,09 19/05/2021 27,3 233 29,5 5,76 38,7 33500	67,8 53,400 60,5 4620 6190 2,46 23/06/2021 66,4 505 55,5 15 136 63300	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59 13,80 154,6 96614	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0 18,50	493,0 111000 16,10 12800 9880 4,73 Max 139,0 967,0 39,00
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni)	mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S. Unités mg/kg M.S.	493 111000 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40 12,90 181,00 91800,00	240 84500 10,10 10,10 8640 6930 3,10 29/07/2020 139,00 967,0 39,00 19,30 199,00 116000,00 18,10	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20 12,90 165,00 74200,00 13,70	393 92300 12,00 11200 7960 3,52 23/09/2020 67,50 596,0 25,70 10,10 106,00 85700,00	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00 13,80 139,00 100000,00 9,87	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3 12,7 172 11000 13,5	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5 14,9 120 98600 9,34	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL 208 1600 26,1 10,8 164 122000 8,97	83 52900 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31 12,8 117 78600 9,63	96,9 73400 14,6 3270 5460 1,97 25/03/2021 115 693 36,2 15,6 115 92300 10,4	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485 17,3 12,9 113 70100 6,53	89,1 1000000 8,5 3470 10900 2,09 19/05/2021 27,3 233 29,5 5,76 38,7 33500	67,8 53400 6,05 4620 6190 2,46 23/06/2021 66,4 505 55,5 15 136 63300 14,9	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59 13,80 154,6 96614 13,04	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0 18,50 10,10 106,0 74200 9,34	493,0 111000 16,10 12800 9880 4,73 Max 139,0 967,0 39,00 19,30 199,0 116000 18,10
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb)	mg/kg M.S.	493 111000 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40 12,90 181,00 91800,00 150,00 4510,00	240 84500 10,10 10,10 8640 6930 3,10 29/07/2020 139,00 967,0 39,00 19,30 199,00 116000,00 18,10 9360,00	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20 12,90 165,00 74200,00 13,70	393 92300 12,00 11200 7960 3,52 23/09/2020 67,50 596,0 25,70 10,10 106,00 85700,00 10,90 6900,00	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00 13,80 139,00 100000,00 9,87 6550,00	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3 12,7 172 110000 13,5	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5 14,9 120 98600 9,34 2640	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL_ 208 1600 26,1 10,8 164 122000 8,97 4410	83 52990 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31 12,8 117 78600 9,63 3950	96,9 73400 14,6 3270 5460 1,97 25/03/2021 115 693 36,2 15,6 115 92300 10,4 8950	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485 17,3 12,9 113 70100 6,53 3280	89,1 100000 8,5 3470 10900 2,09 19/05/2021 27,3 233 29,5 5,76 38,7 33500 4,80	67,8 53400 6,05 4620 6190 2,46 23/06/2021 66,4 505 55,5 15 136 63300 14,9 7390	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59 13,80 154,6 96614 13,04 6473	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0 18,50 10,10 106,0 74200 9,24	493,0 111000 16,10 12800 9880 4,73 Max 139,0 967,0 39,00 19,30 199,0 116000
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni)	mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S. Unités mg/kg M.S.	493 111000 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40 12,90 181,00 91800,00	240 84500 10,10 10,10 8640 6930 3,10 29/07/2020 139,00 967,0 39,00 19,30 199,00 116000,00 18,10	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20 12,90 165,00 74200,00 13,70	393 92300 12,00 11200 7960 3,52 23/09/2020 67,50 596,0 25,70 10,10 106,00 85700,00	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00 13,80 139,00 100000,00 9,87	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3 12,7 172 11000 13,5	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5 14,9 120 98600 9,34	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL 208 1600 26,1 10,8 164 122000 8,97	83 52900 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31 12,8 117 78600 9,63	96,9 73400 14,6 3270 5460 1,97 25/03/2021 115 693 36,2 15,6 115 92300 10,4	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485 17,3 12,9 113 70100 6,53	89,1 1000000 8,5 3470 10900 2,09 19/05/2021 27,3 233 29,5 5,76 38,7 33500	67,8 53400 6,05 4620 6190 2,46 23/06/2021 66,4 505 55,5 15 136 63300 14,9	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59 13,80 154,6 96614 13,04	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0 18,50 10,10 106,0 74200 9,34	493,0 111000 16,10 12800 9880 4,73 Max 139,0 967,0 39,00 19,30 199,0 116000 18,10
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn)	mg/kg M.S.	493 111000 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40 12,90 181,00 91800,00 15,90 4510,00 7230,00	240 84500 10,10 10,10 8640 6930 3,10 29/07/2020 139,00 967,0 39,00 119,30 1199,00 116,000,00 18,10 9360,00 7030,00	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20 12,90 165,00 74200,00 73,70 4750,00 7130,00	393 92300 12,00 11200 7960 3,52 23/09/2020 67,50 596,0 25,70 10,10 106,00 85700,00 10,90 6900,00 6440,00	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00 13,80 139,00 100000,00 9,87 6550,00	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3 12,7 172 110000 13,5	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5 14,9 120 98600 9,34 2640 4420	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL 208 1600 26,1 10,8 164 122000 8,97 4410 5730	83 52900 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31 12,8 117 78600 9,63 3950 6950	96,9 73400 14,6 3270 5460 1,97 25/03/2021 115 693 36,2 15,6 115 92300 10,4 8950	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485 17,3 12,9 113 70100 6,53 3280	89,1 100000 8,5 3470 10900 2,09 19/05/2021 27,3 233 29,5 5,76 38,7 33500 4,83 1480 5140	67,8 53400 6,05 4620 6190 2,46 23/06/2021 66,4 505 55,5 15 136 63300 14,9 7390 15600	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59 13,80 154,6 96614 13,04 6473	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0 18,50 10,10 106,0 74200 9,24	493,0 111000 16,10 12800 9880 4,73 Max 139,0 967,0 39,00 19,30 199,0 116000
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb)	mg/kg M.S.	493 111000 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40 12,90 181,00 91800,00 150,00 4510,00	240 84500 10,10 10,10 8640 6930 3,10 29/07/2020 139,00 967,0 39,00 19,30 199,00 116000,00 18,10 9360,00	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20 12,90 165,00 74200,00 13,70 4750,00	393 92300 12,00 11200 7960 3,52 23/09/2020 67,50 596,0 25,70 10,10 106,00 85700,00 10,90 6900,00	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00 13,80 139,00 100000,00 9,87 6550,00 6930,00	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3 12,7 172 110000 8560	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5 14,9 120 98600 9,34 2640	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL_ 208 1600 26,1 10,8 164 122000 8,97 4410	83 52990 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31 12,8 117 78600 9,63 3950	96,9 73400 14,6 3270 5460 1,97 25/03/2021 115 693 36,2 15,6 115 92300 10,4 8950 4660	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485 17,3 12,9 113 70100 6,53 3280 3960	89,1 100000 8,5 3470 10900 2,09 19/05/2021 27,3 233 29,5 5,76 38,7 33500 4,80	67,8 53400 6,05 4620 6190 2,46 23/06/2021 66,4 505 55,5 15 136 63300 14,9 7390	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59 13,80 154,6 96614 13,04 6473 6820	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0 18,50 10,10 106,0 74200 9,24 4420	493,0 111000 16,10 12800 9880 4,73 Max 139,0 967,0 39,00 19,30 199,0 116000 18,10 10600 8560
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg)	mg/kg M.S.	493 111000 16,10 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40 12,90 181,00 91800,00 15,90 4510,00 7230,00 3,87	240 84500 10,10 10,10 8640 6930 3,10 29/07/2020 139,00 967,0 39,00 19,30 199,00 116000,00 18,10 9360,00 7030,00 3,94	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20 12,90 165,00 74200,00 13,70 4750,00 7130,00 3,56	393 92300 12,00 112,00 7960 3,52 23/09/2020 67,50 596,0 25,70 10,10 106,00 85700,00 10,90 6900,00 6440,00 2,91	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00 13,80 139,00 100000,00 9,87 6550,00 6930,00 2,64	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3 12,7 172 110000 13,5 10600 8560 4,00	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5 14,9 120 98600 9,34 2640 4420 2,20	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL 208 1600 26,1 10,8 164 122000 8,97 4410 5730 1,75	83 52900 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31 12,8 117 78600 9,63 3950 6950	96,9 73400 14,6 3270 5460 1,97 25/03/2021 115 693 36,2 15,6 115 92300 10,4 8950 4660 3,34	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485 17,3 12,9 1113 70100 6,53 3280 2,09	89,1 100000 8,5 3470 10900 2,09 19/05/2021 27,3 233 29,5 5,76 38,7 33500 4,83 1480 5140	67,8 53400 6,05 4620 6190 2,46 23/06/2021 66,4 505 55,5 15 136 63300 14,9 7390 15600 4,62	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59 13,80 154,6 96614 13,04 6473 6820 3,30	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0 18,50 10,10 106,0 74200 9,34 2640 4420 2,20	493,0 111000 16,10 12800 9880 4,73 Max 139,0 967,0 39,00 19,30 116000 18,10 10600 8560 4,00
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Nii) Plomb (Pb) Zinc (Zn)	mg/kg M.S.	493 111000 16,10 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40 12,90 181,00 91800,00 15,90 4510,00 7230,00 3,87	240 84500 10,10 10,10 8640 6930 3,10 29/07/2020 139,00 967,0 39,00 19,30 199,00 116000,00 18,10 9360,00 7030,00 3,94	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20 12,90 165,00 74200,00 73,70 4750,00 7130,00	393 92300 12,00 112,00 7960 3,52 23/09/2020 67,50 596,0 25,70 10,10 106,00 85700,00 10,90 6900,00 6440,00 2,91	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00 13,80 139,00 100000,00 9,87 6550,00 6930,00 2,64	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3 12,7 172 110000 13,5 10600 8560 4,00	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5 14,9 120 98600 9,34 2640 4420 2,20	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL 208 1600 26,1 10,8 164 122000 8,97 4410 5730 1,75	83 52900 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31 12,8 117 78600 9,63 3950 6950 3,53	96,9 73400 14,6 3270 5460 1,97 25/03/2021 115 693 36,2 15,6 115 92300 10,4 8950 4660 3,34	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485 17,3 12,9 1113 70100 6,53 3280 2,09	89,1 100000 8,5 3470 10900 2,09 19/05/2021 27,3 233 29,5 5,76 38,7 33500 4,83 1480 5140	67,8 53400 6,05 4620 6190 2,46 23/06/2021 66,4 505 55,5 15 136 63300 14,9 7390 15600 4,62	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59 13,80 154,6 96614 13,04 6473 6820	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0 18,50 10,10 106,0 74200 9,24 4420	493,0 111000 16,10 12800 9880 4,73 Max 139,0 967,0 39,00 19,30 199,0 116000 18,10 10600 8560
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg)	mg/kg M.S.	493 111000 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40 12,90 181,00 91800,00 15,90 4510,00 7230,00 3,87 26/06/2020	240 84500 10,10 10,10 8640 6930 3,10 29/07/2020 139,00 967,0 39,00 19,30 199,30 116,000,00 18,10 9360,00 7030,00 3,94 29/07/2020	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20 12,90 165,00 74200,00 13,70 4750,00 730,00 3,56	393 92300 12,00 11200 7960 3,52 23/09/2020 67,50 596,0 25,70 10,10 106,00 10,90 6900,00 6440,00 2,91 23/09/2020	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00 13,80 139,00 100000,00 9,87 6550,00 6930,00 2,64	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3 12,7 172 11000 13,5 10600 8560 4,00	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5 14,9 120 98600 9,34 2640 4420 2,20	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL 208 1600 26,1 10,8 164 122000 8,97 4410 5730 1,75	83 52900 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31 12,8 117 78600 9,63 3950 6950 3,53 24/02/2021 RNET	96,9 73400 14,6 3270 5460 1,97 25/03/2021 115 693 36,2 15,6 115 92300 10,4 8950 4660 3,34 25/03/2021	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485 17,3 12,9 113 70100 6,53 3280 3960 2,09	89,1 100000 8,5 3470 10900 2,09 19/05/2021 27,3 233 29,5 5,76 38,7 33500 4,83 1480 5140 1,14	67,8 53400 6,05 4620 6190 2,46 23/06/2021 66,4 505 55,5 15 136 63300 14,9 7390 15600 4,62	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59 13,80 154,6 96614 13,04 6473 6820 3,30	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0 18,50 10,10 106,0 74200 9,34 2640 4420 2,20	111000 16,10 12800 9880 4,73 Max 139,0 967,0 39,00 19,30 199,0 116000 18,10 10600 8560 4,00
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg)	mg/kg M.S.	493 111000 16,10 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40 12,90 181,00 91800,00 15,90 4510,00 7230,00 3,87	240 84500 10,10 10,10 8640 6930 3,10 29/07/2020 139,00 967,0 39,00 19,30 199,00 116000,00 18,10 9360,00 7030,00 3,94	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20 12,90 165,00 74200,00 13,70 4750,00 7130,00 3,56	393 92300 12,00 112,00 7960 3,52 23/09/2020 67,50 596,0 25,70 10,10 106,00 85700,00 10,90 6900,00 6440,00 2,91	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00 13,80 139,00 100000,00 9,87 6550,00 6930,00 2,64	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3 12,7 172 110000 13,5 10600 8560 4,00	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5 14,9 120 98600 9,34 2640 4420 2,20	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL 208 1600 26,1 10,8 164 122000 8,97 4410 5730 1,75	83 52900 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31 12,8 117 78600 9,63 3950 6950 3,53	96,9 73400 14,6 3270 5460 1,97 25/03/2021 115 693 36,2 15,6 115 92300 10,4 8950 4660 3,34	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485 17,3 12,9 1113 70100 6,53 3280 2,09	89,1 100000 8,5 3470 10900 2,09 19/05/2021 27,3 233 29,5 5,76 38,7 33500 4,83 1480 5140	67,8 53400 6,05 4620 6190 2,46 23/06/2021 66,4 505 55,5 15 136 63300 14,9 7390 15600 4,62	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59 13,80 154,6 96614 13,04 6473 6820 3,30	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0 18,50 10,10 106,0 74200 9,34 2640 4420 2,20	493,0 111000 16,10 12800 9880 4,73 Max 139,0 967,0 39,00 19,30 199,0 116000 18,10 10600 8560 4,00
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres	mg/kg M.S.	493 111000 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40 12,90 181,00 91800,00 15,90 4510,00 7230,00 3,87 26/06/2020	240 84500 10,10 10,10 8640 6930 3,10 29/07/2020 139,00 967,0 39,00 19,30 19,30 19,30 19,30 3,94 29/07/2020 3,74	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20 12,90 165,00 74200,00 13,70 4750,00 7330,00 3,56 26/08/2020	393 92300 12,00 11200 7960 3,52 23/09/2020 67,50 596,0 25,70 10,10 106,00 10,90 6900,00 6440,00 2,91 23/09/2020	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00 13,80 139,00 100000,00 9,87 6550,00 2,64 22/10/2020	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3 12,7 172 110000 13,5 10600 8560 4,00	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5 14,9 120 98600 9,34 2640 4420 2,20 17/12/2020	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL 208 1600 26,1 10,8 164 122000 8,97 4410 5730 1,75 27/01/2021 BIJOU 7,28	83 52900 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31 12,8 117 78600 9,63 3950 6950 3,53 24/02/2021 JRNET 16,9	96,9 73400 14,6 3270 5460 1,97 25/03/2021 115 693 36,2 15,6 115 92300 10,4 8950 4660 3,34 25/03/2021	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485 17,3 12,9 113 70100 6,53 3280 3960 2,09 21/04/2021	89,1 100000 8,5 3470 10900 2,09 19/05/2021 27,3 233 29,5 5,76 38,7 33500 4,83 1480 5,140 1,14	67,8 53400 6,05 4620 6190 2,46 23/06/2021 66,4 505 55,5 15 136 63300 14,9 7390 15600 4,62 23/06/2021	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59 13,80 154,6 96614 13,04 6473 6820 3,30	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0 18,50 10,10 106,0 74200 9,34 2640 4420 2,20	111000 16,10 12800 9880 4,73 Max 139,0 967,0 39,00 19,30 199,0 116000 18,10 10600 8560 4,00
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg)	mg/kg M.S.	493 111000 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40 12,90 181,00 91800,00 15,90 4510,00 7230,00 3,87 26/06/2020	240 84500 10,10 10,10 8640 6930 3,10 29/07/2020 139,00 967,0 39,00 19,30 19,30 19,30 19,30 3,94 29/07/2020 3,74 525,0	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20 12,90 165,00 74200,00 13,70 4750,00 730,00 3,56 26/08/2020 7,61 310,0	393 92300 12,00 11200 7960 3,52 23/09/2020 67,50 596,0 25,70 10,10 106,00 10,90 6900,00 6440,00 2,91 23/09/2020	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00 13,80 139,00 100000,00 9,87 6550,00 6930,00 2,64 22/10/2020	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3 12,7 172 110000 13,5 10600 8560 4,00	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5 14,9 120 98600 9,34 2640 4420 2,20 17/12/2020 7,65 375	73,5 62200 15,1 3500 5700 1,41 27/01/2021 208 1600 26,1 10,8 164 122000 8,97 4410 1,75 27/01/2021 BIJOU 7,28 415	83 52900 12,3 3870 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31 12,8 117 78600 9,63 3950 6950 3,53 24/02/2021 JRNET 16,9 575	96,9 73400 14,6 3270 5460 1,97 25/03/2021 115 693 36,2 15,6 115 92300 10,4 8950 4660 3,34 25/03/2021	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485 17,3 12,9 113 70100 6,53 3280 3960 2,09 21/04/2021	89,1 100000 8,5 3470 10900 2,09 19/05/2021 27,3 233 29,5 5,76 38,7 33500 4,83 1480 5140 1,14	67,8 53400 6,05 4620 6190 2,46 23/06/2021 66,4 505 55,5 15 136 63300 14,9 7390 15600 4,62 23/06/2021	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59 13,80 154,6 96614 13,04 6473 6820 3,30 Moyenne	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0 18,50 10,10 106,0 74200 9,34 2640 4420 2,20 Min	111000 12800 9880 4,73 Max 139,0 967,0 39,00 19,30 199,0 116000 18,10 10600 8560 4,00 Max
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres	mg/kg M.S.	493 111000 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40 12,90 181,00 91800,00 15,90 4510,00 7230,00 3,87	240 84500 10,10 10,10 8640 6930 3,10 29/07/2020 139,00 967,0 39,00 19,30 19,30 19,30 19,30 3,94 29/07/2020 3,74	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20 12,90 165,00 74200,00 13,70 4750,00 7330,00 3,56 26/08/2020	393 92300 12,00 11200 7960 3,52 23/09/2020 67,50 596,0 25,70 10,10 106,00 10,90 6900,00 6440,00 2,91 23/09/2020	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00 13,80 139,00 100000,00 9,87 6550,00 2,64 22/10/2020	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3 12,7 172 110000 13,5 10600 8560 4,00	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5 14,9 120 98600 9,34 2640 4420 2,20 17/12/2020	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL 208 1600 26,1 10,8 164 122000 8,97 4410 5730 1,75 27/01/2021 BIJOU 7,28	83 52900 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31 12,8 117 78600 9,63 3950 6950 3,53 24/02/2021 JRNET 16,9	96,9 73400 14,6 3270 5460 1,97 25/03/2021 115 693 36,2 15,6 115 92300 10,4 8950 4660 3,34 25/03/2021	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485 17,3 12,9 113 70100 6,53 3280 3960 2,09 21/04/2021	89,1 100000 8,5 3470 10900 2,09 19/05/2021 27,3 233 29,5 5,76 38,7 33500 4,83 1480 5,140 1,14	67,8 53400 6,05 4620 6190 2,46 23/06/2021 66,4 505 55,5 15 136 63300 14,9 7390 15600 4,62 23/06/2021	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59 13,80 154,6 96614 13,04 6473 6820 3,30	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0 18,50 10,10 106,0 74200 9,34 2640 4420 2,20	111000 16,10 12800 9880 4,73 Max 139,0 967,0 39,00 19,30 199,0 116000 18,10 10600 8560 4,00
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium Arsenic (As) Cadmium Col Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Arsenic (As) Cadmium	mg/kg M.S.	493 111000 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40 12,90 181,00 91800,00 15,90 4510,00 7230,00 3,87 26/06/2020	240 84500 10,10 10,10 8640 6930 3,10 29/07/2020 139,00 967,0 39,00 19,30 19,30 19,30 19,30 3,94 29/07/2020 3,74 525,0	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20 12,90 165,00 74200,00 13,70 4750,00 730,00 3,56 26/08/2020 7,61 310,0	393 92300 12,00 11200 7960 3,52 23/09/2020 67,50 596,0 25,70 10,10 106,00 10,90 6900,00 6440,00 2,91 23/09/2020	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00 13,80 139,00 100000,00 9,87 6550,00 6930,00 2,64 22/10/2020	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3 12,7 172 110000 13,5 10600 8560 4,00	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5 14,9 120 98600 9,34 2640 4420 2,20 17/12/2020 7,65 375	73,5 62200 15,1 3500 5700 1,41 27/01/2021 208 1600 26,1 10,8 164 122000 8,97 4410 1,75 27/01/2021 BIJOU 7,28 415	83 52900 12,3 3870 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31 12,8 117 78600 9,63 3950 6950 3,53 24/02/2021 JRNET 16,9 575	96,9 73400 14,6 3270 5460 1,97 25/03/2021 115 693 36,2 15,6 115 92300 10,4 8950 4660 3,34 25/03/2021	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485 17,3 12,9 113 70100 6,53 3280 3960 2,09 21/04/2021	89,1 100000 8,5 3470 10900 2,09 19/05/2021 27,3 233 29,5 5,76 38,7 33500 4,83 1480 5140 1,14	67,8 53400 6,05 4620 6190 2,46 23/06/2021 66,4 505 55,5 15 136 63300 14,9 7390 15600 4,62 23/06/2021	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59 13,80 154,6 96614 13,04 6473 6820 3,30 Moyenne	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0 18,50 10,10 106,0 74200 9,34 2640 4420 2,20 Min	111000 12800 9880 4,73 Max 139,0 967,0 39,00 19,30 199,0 116000 18,10 10600 8560 4,00 Max
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Arcure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd)	mg/kg M.S.	493 111000 16,10 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40 12,90 181,00 15,90 4510,00 7230,00 3,87 26/06/2020 15,30 542,0 18,70	240 84500 10,10 10,10 8640 6930 3,10 29/07/2020 139,00 967,0 39,00 19,30 199,30 199,30 199,30 3,94 29/07/2020 3,74 525,0 23,90	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20 12,90 165,00 74200,00 13,70 4750,00 730,00 3,56 26/08/2020 7,61 310,0 18,70	393 92300 12,00 112,00 11200 7960 3,52 23/09/2020 67,50 596,0 25,70 10,10 106,00 10,90 6900,00 6440,00 2,91 23/09/2020 12,30 188,0 15,30	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00 13,80 139,00 100000,00 9,87 6550,00 2,64 22/10/2020 17,30 452,0 20,80	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3 12,7 172 110000 13,5 10600 8560 4,00 26/11/2020	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5 14,9 120 98600 9,34 2640 4420 2,20 17/12/2020 7,65 375 18,8	73,5 62200 15,1 3500 5700 1,41 27/01/2021 208 1600 26,1 10,8 164 122000 8,97 4410 27/01/2021 BIJOU 7,28 415	83 52900 12,3 3870 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31 12,8 117 78600 9,63 3950 6950 3,53 24/02/2021 RNET 16,9 575 30,8	96,9 73400 14,6 3270 5460 1,97 25/03/2021 115 693 36,2 15,6 115 92300 10,4 8950 4660 3,34 25/03/2021 4,42 924 40,7	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485 17,3 12,9 113 70100 6,53 3280 3960 2,09 21/04/2021	89,1 100000 8,5 3470 10900 2,09 19/05/2021 27,3 233 29,5 5,76 38,7 33500 4,83 1480 5140 1,14 19/05/2021 7,96 443 27,3	67,8 53400 6,05 4620 6190 2,46 23/06/2021 66,4 505 55,5 15 136 63300 14,9 7390 15600 4,62 23/06/2021	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59 13,80 154,6 96614 13,04 6473 6820 3,30 Moyenne	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0 18,50 10,10 106,0 74200 9,34 2640 4420 2,20 Min 3,74	111000 12800 9880 4,73 Max 139,0 967,0 39,00 19,30 199,0 116000 18,10 10600 8560 4,00 Max 17,30 542,0 23,90
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Cadmium (Cd) Chrome (Cr)	mg/kg M.S.	493 111000 16,10 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40 12,90 181,00 91800,00 7230,00 3,87 26/06/2020 15,30 542,0 18,70 27,60	240 84500 10,10 10,10 8640 6930 3,10 29/07/2020 139,00 19,30 199,00 11600,00 18,10 9360,00 7030,00 3,94 29/07/2020 3,74 525,0 23,90 17,50	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20 12,90 165,00 74200,00 73,70 4750,00 7130,00 3,56 26/08/2020 7,61 310,0 18,70 27,50	393 92300 12,00 112,00 11200 7960 3,52 23/09/2020 67,50 596,0 25,70 10,10 106,00 6440,00 2,91 23/09/2020 12,30 188,0 15,30	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00 13,80 139,00 100000,00 9,87 6550,00 6930,00 2,64 22/10/2020 17,30 452,0 20,80 27,40	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3 12,7 172 110000 13,5 10600 8560 4,00 26/11/2020 12,2 435 17,8	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5 14,9 120 98600 9,34 2640 4420 2,20 17/12/2020 7,65 375 18,8	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL 208 1600 26,1 10,8 164 122000 8,97 4410 5730 1,75 27/01/2021 BIJOU 7,28 415 19,9 27,8	83 52900 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31 12,8 117 78600 9,63 3950 6950 3,53 24/02/2021 JRNET 16,9 575 30,8 29,3	96,9 73400 14,6 3270 5460 1,97 25/03/2021 115 693 36,2 15,6 115 92300 10,4 8950 4660 3,34 25/03/2021 4,42 924 40,7	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485 17,3 12,9 113 70100 6,53 3280 3960 2,09 21/04/2021 13,6 926 24,5	89,1 100000 8,5 3470 10900 2,09 19/05/2021 27,3 233 29,5 5,76 38,7 33500 4,83 1480 5140 1,14 19/05/2021 7,96 443 27,3	67,8 53400 6,05 4620 6190 2,46 23/06/2021 66,4 505 55,5 15 136 63300 14,9 7390 15600 4,62 23/06/2021 16,7 319 22,1 18,1	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59 13,80 154,6 96614 13,04 6473 6820 3,30 Moyenne	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0 18,50 10,10 106,0 74200 9,34 2640 4420 2,20 Min 3,74 188,0 15,30	111000 16,10 12800 9880 4,73 Max 139,0 967,0 39,00 19,30 199,0 116000 18,10 10600 8560 4,00 Max 17,30 542,0 23,90 28,40
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Cinc (Zn) Mercure (Hg) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni)	mg/kg M.S.	493 111000 16,10 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40 12,90 181,00 91800,00 15,90 4510,00 7230,00 3,87 26/06/2020 15,30 542,0 18,70 27,60 44,50 103000 82,30	240 84500 10,10 8640 6930 3,10 29/07/2020 139,00 967,0 39,00 119,30 199,30 199,30 199,30 199,30 199,30 199,30 120,00 3,94 29/07/2020 3,74 525,0 23,90 17,50 23,60 94600 142,00	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20 12,90 165,00 74200,00 73,70 4750,00 7130,00 3,56 26/08/2020 7,61 310,0 18,70 27,50 28,80 61700 50,10	393 92300 12,00 112,00 11200 7960 3,52 23/09/2020 67,50 596,0 25,70 10,10 106,00 63500,00 6440,00 2,91 23/09/2020 12,30 188,0 15,30 28,40 69,00 55660 48,90	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00 13,80 13,90 100000,00 9,87 6550,00 6930,00 2,64 22/10/2020 17,30 452,0 20,80 27,40 30,00 79200 87,70	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3 12,7 172 110000 13,5 10600 8560 4,00 26/11/2020 12,2 435 17,8 18,8 22,6 79200 120	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5 14,9 120 98600 9,34 2640 4420 2,20 17/12/2020 7,65 375 18,8 26,5 59,8 77800 1111	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL 208 1600 26,1 10,8 164 122000 8,97 4410 5730 1,75 27/01/2021 BIJOU 7,28 415 19,9 27,8 48,6 76500 70,7	83 52900 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31 12,8 117 78600 9,63 3950 6950 3,53 24/02/2021 JRNET 16,9 575 30,8 29,3 54,6 102000 155	96,9 73400 14,6 3270 5460 1,97 25/03/2021 115 693 36,2 15,6 115 92300 10,4 8950 4660 3,34 25/03/2021 4,42 924 40,7 23 42,7 1600000 106	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485 17,3 12,9 113 70100 6,53 3280 3960 2,09 21/04/2021 13,6 926 24,5 19,7 42,8 15300 94,1	89,1 1000000 8,5 3470 109000 2,09 119/05/2021 27,3 233 29,5 5,76 38,77 33500 4,83 1480 5140 1,14 119/05/2021 7,96 443 27,3 29,5 56,7 85000 90,9	67,8 53400 6,05 4620 6190 2,46 23/06/2021 66,4 505 55,5 15 136 63300 14,9 7390 15600 4,62 23/06/2021 16,7 319 22,1 18,1 45,6 50400 45	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59 13,80 154,6 96614 13,04 6473 6820 3,30 Moyenne	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0 18,50 10,10 106,0 74200 9,34 2640 4420 2,20 Min 188,0 15,30 17,50 22,60 56600 48,90	111000 12800 9880 4,73 Max 139,0 967,0 39,00 19,30 199,0 116000 8560 4,00 Max 17,30 542,0 23,90 28,40 69,00 193000 142,00
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Zinc (Zn) Mercure (Hg) Per (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Nii) Plomb (Pb)	mg/kg M.S.	493 111000 16,10 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40 12,90 181,00 91800,00 15,90 4510,00 7230,00 3,87 26/06/2020 15,30 542,0 18,70 27,60 44,50 103000 82,30 479	240 84500 10,10 10,10 8640 6930 3,10 29/07/2020 139,00 19,30 199,00 116000,00 18,10 9360,00 7030,00 3,94 29/07/2020 3,74 525,0 23,90 17,50 23,60 94600 142,00 430	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20 12,90 165,00 74200,00 733,70 4750,00 7130,00 3,56 26/08/2020 7,61 310,0 18,70 27,50 28,80 61700 50,10 583	393 92300 12,00 11200 7960 3,52 23/09/2020 67,50 596,0 25,70 10,10 106,00 8570,00 6400,00 6440,00 2,91 23/09/2020 12,30 188,0 15,30 28,40 69,00 56600 48,90 48,90 48,90	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00 13,80 139,00 100000,00 2,64 22/10/2020 17,30 452,0 20,80 27,40 30,00 79200 87,70 617	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3 12,7 172 110000 8560 4,00 26/11/2020 12,2 435 17,8 18,8 22,6 79200 120 527	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5 14,9 120 98600 9,34 2640 4420 2,20 17/12/2020 7,65 375 18,8 26,5 59,8 77800 111 773	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL 208 1600 26,1 10,8 164 122000 8,97 4410 5730 1,75 27/01/2021 BIJOU 7,28 415 19,9 27,8 48,6 76500 70,7 529	83 52900 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31 12,8 117 78600 950 3,53 24/02/2021 RNET 16,9 575 30,8 29,3 54,6 102000 155	96,9 73400 14,6 3270 5460 1,97 25/03/2021 115 693 36,2 15,6 115 92300 10,4 8950 4660 3,34 25/03/2021 4,42 924 40,7 23 42,7 160000 106 447	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485 17,3 12,9 113 70100 6,53 3280 3960 2,09 21/04/2021 13,6 926 24,5 19,7 42,8 153000 94,1 336	89,1 100000 8,5 3470 10900 2,09 19/05/2021 27,3 233 29,5 5,76 38,7 33500 4,83 1480 5140 1,14 19/05/2021 7,96 443 27,3 29,5 56,7 85000 90,9 414	67,8 53400 6,05 4620 6190 2,46 23/06/2021 66,4 505 55,5 15 136 63300 14,9 7390 15600 4,62 23/06/2021 16,7 319 22,1 18,1 45,6 50400 45 1080	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59 13,80 154,6 96614 13,04 6473 6820 3,30 Moyenne 10,87 403,9 19,14 24,81 39,76 78871 91,71 539,4	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0 18,50 10,10 106,0 74200 9,34 2640 4420 2,20 Min 188,0 15,30 17,50 22,60 56600 48,90 367	493,0 111000 16,10 12800 9880 4,73 Max 139,0 967,0 39,00 19,30 199,0 116000 8560 4,00 Max 17,30 542,0 23,90 28,40 69,00 103000 142,000 773
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Cinc (Zn) Mercure (Hg) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni)	mg/kg M.S.	493 111000 16,10 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40 12,90 181,00 91800,00 15,90 4510,00 7230,00 3,87 26/06/2020 15,30 542,0 18,70 27,60 44,50 103000 82,30	240 84500 10,10 8640 6930 3,10 29/07/2020 139,00 967,0 39,00 119,30 199,30 199,30 199,30 199,30 199,30 199,30 120,00 3,94 29/07/2020 3,74 525,0 23,90 17,50 23,60 94600 142,00	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20 12,90 165,00 74200,00 73,70 4750,00 7130,00 3,56 26/08/2020 7,61 310,0 18,70 27,50 28,80 61700 50,10	393 92300 12,00 112,00 11200 7960 3,52 23/09/2020 67,50 596,0 25,70 10,10 106,00 63500,00 6440,00 2,91 23/09/2020 12,30 188,0 15,30 28,40 69,00 55660 48,90	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00 13,80 13,90 100000,00 9,87 6550,00 6930,00 2,64 22/10/2020 17,30 452,0 20,80 27,40 30,00 79200 87,70	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3 12,7 172 110000 13,5 10600 8560 4,00 26/11/2020 12,2 435 17,8 18,8 22,6 79200 120	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5 14,9 120 98600 9,34 2640 4420 2,20 17/12/2020 7,65 375 18,8 26,5 59,8 77800 1111	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL 208 1600 26,1 10,8 164 122000 8,97 4410 5730 1,75 27/01/2021 BIJOU 7,28 415 19,9 27,8 48,6 76500 70,7	83 52900 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31 12,8 117 78600 9,63 3950 6950 3,53 24/02/2021 JRNET 16,9 575 30,8 29,3 54,6 102000 155	96,9 73400 14,6 3270 5460 1,97 25/03/2021 115 693 36,2 15,6 115 92300 10,4 8950 4660 3,34 25/03/2021 4,42 924 40,7 23 42,7 1600000 106	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485 17,3 12,9 113 70100 6,53 3280 3960 2,09 21/04/2021 13,6 926 24,5 19,7 42,8 15300 94,1	89,1 1000000 8,5 3470 109000 2,09 119/05/2021 27,3 233 29,5 5,76 38,77 33500 4,83 1480 5140 1,14 119/05/2021 7,96 443 27,3 29,5 56,7 85000 90,9	67,8 53400 6,05 4620 6190 2,46 23/06/2021 66,4 505 55,5 15 136 63300 14,9 7390 15600 4,62 23/06/2021 16,7 319 22,1 18,1 45,6 50400 45	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59 13,80 154,6 96614 13,04 6473 6820 3,30 Moyenne	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0 18,50 10,10 106,0 74200 9,34 2640 4420 2,20 Min 188,0 15,30 17,50 22,60 56600 48,90	111000 12800 9880 4,73 Max 139,0 967,0 39,00 19,30 199,0 116000 8560 4,00 Max 17,30 542,0 23,90 28,40 69,00 193000 142,00
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Nii) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Nii) Plomb (Pb) Zinc (Zn)	mg/kg M.S.	493 111000 16,10 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40 12,90 181,00 91800,00 15,90 4510,00 7230,00 3,87 26/06/2020 15,30 542,0 18,70 27,60 44,50 103000 82,30 479 11000	240 84500 10,10 8640 6930 3,10 29/07/2020 139,00 967,0 39,00 119,30 199,00 116000,00 18,10 9360,00 7030,00 3,94 29/07/2020 3,74 525,0 23,90 17,50 23,60 94600 142,00 430 29600	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20 12,90 165,00 74200,00 3,56 26/08/2020 7,61 310,0 18,70 27,50 28,80 61700 50,10 583 9480	393 92300 12,00 11200 7960 3,52 23/09/2020 67,50 596,0 25,70 10,10 106,00 85700,00 6440,00 2,91 23/09/2020 12,30 188,0 15,30 28,40 69,00 56600 48,90 367 6280	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00 13,80 139,00 100000,00 2,64 22/10/2020 17,30 452,0 20,80 27,40 30,00 79200 87,70 617 21600	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3 12,7 172 110000 8560 4,00 26/11/2020 12,2 435 17,8 18,8 22,6 79200 527 22200	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5 14,9 120 98600 4420 2,20 17/12/2020 7,65 375 18,8 26,5 59,8 77800 111 773 18400	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL_ 208 1600 26,1 10,8 164 122000 8,97 4410 5730 1,75 27/01/2021 BIJOU 7,28 415 19,9 27,8 48,6 76500 70,7 529 10500	83 52900 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31 12,8 117 78600 9,63 3950 6950 3,53 24/02/2021 RNET 16,9 575 30,8 29,3 54,6 102000 155 447 16700	96,9 73400 14,6 3270 5460 1,97 25/03/2021 115 693 36,2 15,6 115 92300 4660 3,34 25/03/2021 4,42 924 40,7 23 42,7 160000 106 447 18100	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485 17,3 12,9 113 70100 6,53 3280 3960 2,09 21/04/2021 13,6 926 24,5 19,7 42,8 153000 94,1 396 18300	89,1 100000 8,5 3470 10900 2,09 19/05/2021 27,3 233 29,5 5,76 38,7 33500 4,83 1480 5140 1,14 19/05/2021 7,96 443 27,3 29,5 56,7 85000 90,9 414 12200	67,8 53400 6,05 4620 6190 2,46 23/06/2021 66,4 505 55,5 15 136 63300 14,9 7390 15600 4,62 23/06/2021 16,7 319 22,1 18,1 45,6 50400 45 1080 8440	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59 13,80 154,6 96614 13,04 6473 6820 3,30 Moyenne 10,87 403,9 19,14 24,81 39,76 78871 91,71 539,4 16937	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0 18,50 10,10 106,0 74200 9,34 2640 4420 2,20 Min 15,30 17,50 22,60 56600 48,90 367 6280	493,0 111000 16,10 12800 9880 4,73 Max 139,0 967,0 39,00 19,30 199,0 116000 8560 4,00 Max 17,30 542,0 23,90 28,40 69,00 103000 1142,00 773 29600
Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure (Hg) Paramètres Antimoine (Sb) Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Cuivre (Cu) Fer (Fe) Cuivre (Cu) Fer (Fe)	mg/kg M.S.	493 111000 16,10 16,10 12300 8210 4,73 26/06/2020 85,00 699,0 30,40 12,90 181,00 91800,00 15,90 4510,00 7230,00 3,87 26/06/2020 15,30 542,0 18,70 27,60 44,50 103000 82,30 479	240 84500 10,10 10,10 8640 6930 3,10 29/07/2020 139,00 967,0 39,00 19,30 199,00 116000,00 18,10 9360,00 7030,00 3,94 29/07/2020 3,74 525,0 23,90 17,50 23,60 94600 142,00 430	234 111000 10,20 7350 5900 3,48 26/08/2020 64,40 538,0 33,20 12,90 165,00 74200,00 733,70 4750,00 7130,00 3,56 26/08/2020 7,61 310,0 18,70 27,50 28,80 61700 50,10 583	393 92300 12,00 11200 7960 3,52 23/09/2020 67,50 596,0 25,70 10,10 106,00 8570,00 6400,00 6440,00 2,91 23/09/2020 12,30 188,0 15,30 28,40 69,00 56600 48,90 48,90 48,90	340 99800 10,70 12800 9880 3,97 22/10/2020 126,00 911,0 33,00 13,80 139,00 100000,00 2,64 22/10/2020 17,30 452,0 20,80 27,40 30,00 79200 87,70 617	344 92000 12,9 11300 8570 4,16 26/11/2020 92,1 728 34,3 12,7 172 110000 8560 4,00 26/11/2020 12,2 435 17,8 18,8 22,6 79200 120 527	246 88900 12,7 12100 7280 3,98 17/12/2020 90,3 703 18,5 14,9 120 98600 9,34 2640 4420 2,20 17/12/2020 7,65 375 18,8 26,5 59,8 77800 111 773	73,5 62200 15,1 3500 5700 1,41 27/01/2021 AVAL 208 1600 26,1 10,8 164 122000 8,97 4410 5730 1,75 27/01/2021 BIJOU 7,28 415 19,9 27,8 48,6 76500 70,7 529	83 52900 12,3 3870 5610 2,03 24/02/2021 AIGUES 87,7 809 31 12,8 117 78600 950 3,53 24/02/2021 RNET 16,9 575 30,8 29,3 54,6 102000 155	96,9 73400 14,6 3270 5460 1,97 25/03/2021 115 693 36,2 15,6 115 92300 10,4 8950 4660 3,34 25/03/2021 4,42 924 40,7 23 42,7 160000 106 447	87,6 66900 12,2 3990 3730 1,91 21/04/2021 73,8 485 17,3 12,9 113 70100 6,53 3280 3960 2,09 21/04/2021 13,6 926 24,5 19,7 42,8 153000 94,1 336	89,1 100000 8,5 3470 10900 2,09 19/05/2021 27,3 233 29,5 5,76 38,7 33500 4,83 1480 5140 1,14 19/05/2021 7,96 443 27,3 29,5 56,7 85000 90,9 414	67,8 53400 6,05 4620 6190 2,46 23/06/2021 66,4 505 55,5 15 136 63300 14,9 7390 15600 4,62 23/06/2021 16,7 319 22,1 18,1 45,6 50400 45 1080	327,1 97071 12,10 10813 7818,6 3,85 Moyenne 94,9 734,6 30,59 13,80 154,6 96614 13,04 6473 6820 3,30 Moyenne 10,87 403,9 19,14 24,81 39,76 78871 91,71 539,4	234,0 84500 10,10 7350 5900 3,10 Min 64,4 538,0 18,50 10,10 106,0 74200 9,34 2640 4420 2,20 Min 188,0 15,30 17,50 22,60 56600 48,90 367	493,0 111000 16,10 12800 9880 4,73 Max 139,0 967,0 39,00 19,30 199,0 116000 8560 4,00 Max 17,30 542,0 23,90 28,40 69,00 103000 142,000 773

ANNEXE 2 : Normes et limites analytiques sur matrice eau

ANALYSES	NORMES	LQI	Incertitude à la LQ
Pa	ramètres physico-chimique	es généraux	
Conductivité	NF EN 27888 ISO 7888	1 μs/cm	-
рН	NF T 90-008	-	-
	Paramètres métaux et as	similés	
Antimoine (Sb)	NF EN ISO 17294-2	0,2 μg/L	30 %
Arsenic (As)	NF EN ISO 17294-2	0,2 μg/L	20 %
Cadmium (Cd)	NF EN ISO 17294-2	0,2 μg/L	20 %
Chrome (Cr)	NF EN ISO 17294-2	0,5 μg/L	30 %
Cuivre (Cu)	NF EN ISO 17294-2	0,5 μg/L	20 %
Nickel (Ni)	NF EN ISO 17294-2	2 μg/L	25 %
Plomb (Pb)	NF EN ISO 17294-2	0,5 μg/L	25 %
Zinc (Zn)	NF EN ISO 17294-2	5 μg/L	-
Fer (Fe)	NF EN ISO 17294-2	0,001 mg/L	50 %
Mercure (Hg)	NF EN ISO 17852	0,2 μg/L	30 %
	Autres		
Carbone organique total	NF EN 1484	0,5 mC/L	50 %
Cyanures aisément libérables	NF EN ISO 14403-2	10 μg/L	40 %
Cyanures totaux	NF EN ISO 14403	10 μg/L	40 %

Tableau 10: Normes et limites analytiques

ANNEXE 3 : Normes et limites analytiques sur matrice sédiment

ANALYSES	NORMES	LQI	Incertitude à la LQ					
Pa	ramètres physico-chimique	es généraux						
рН	pH Ad. NF ISO 10390 -							
Paramètres métaux et assimilés								
Antimoine (Sb)	NF EN ISO 11885	1 mg/kg M.S.	35 %					
Arsenic (As)	NF EN ISO 11885	1 mg/kg M.S.	40 %					
Cadmium (Cd)	NF EN ISO 11885	0,4 mg/kg M.S.	40 %					
Chrome (Cr)	NF EN ISO 11885	5 mg/kg M.S.	45 %					
Cuivre (Cu)	NF EN ISO 11885	5 mg/kg M.S.	50 %					
Fer (Fe)	NF EN ISO 11885	5 mg/kg M.S.	25 %					
Nickel (Ni)	NF EN ISO 11885	1 mg/kg M.S.	50 %					
Plomb (Pb)	NF EN ISO 11885	5 mg/kg M.S.	30 %					
Zinc (Zn)	NF EN ISO 11885	5 mg/kg M.S.	25 %					
Mercure (Hg)	NF EN 13346	0,1 mg/kg M.S.	20 %					
	Autres							
Carbone organique total	NF EN 15936	1000 mC/L	40 %					
Cyanures aisément libérables	NF EN ISO 17380	0,5 mg/kg M.S.	40 %					
Cyanures totaux	NF EN ISO 17380	0,5 mg/kg M.S.	40 %					

ANNEXE 4 : Résultats d'analyses

MINELIS
Madame Elise DELPECH
8 rue paulin talabot
31000 TOULOUSE

RAPPORT D'ANALYSE

Dossier N°: 21E126154 Version du: 01/07/2021

N° de rapport d'analyse : AR-21-LK-147901-01 Date de réception technique : 24/06/2021

Première date de réception physique : 24/06/2021

Référence Dossier : N° Projet : B2B LK012862

Nom Projet: Projet par défaut MyEOL (Ne pas supprimer)

Nom Commande : UMISFX20B

Référence Commande :

Coordinateur de Projets Clients : Marion Medina / MarionMedina@eurofins.com / +33 64974 5158

N° Ech	Matrice		Référence échantillon
001	Eau souterraine	(ESO)	Bijournet ESO
002	Eau souterraine	(ESO)	Bijournet filtrée
003	Eau de surface	(ESU)	AIGUES ESU
004	Eau de surface	(ESU)	AIGUES filtrée
005	Eau de surface	(ESU)	DIGUE ESU
006	Eau de surface	(ESU)	DIGUE filtrée

RAPPORT D'ANALYSE

Dossier N°: 21E126154

Version du : 01/07/2021

N° de rapport d'analyse : AR-21-LK-147901-01

Date de réception technique : 24/06/2021

Première date de réception physique : 24/06/2021

Référence Dossier : N° Projet : B2B LK012862

Nom Projet : Projet par défaut MyEOL (Ne pas supprimer)

Nom Commande : UMISFX20B

Référence Commande :

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :	F	2:	001 Bijournet ESO ESO 3/06/2021 4/06/2021 12.6°C	2 2	002 Bijournet filtrée ESO 3/06/2021 44/06/2021 12.6°C hysico-C	2 2	003 GUES ESU 3/06/2021 4/06/2021 12.6°C mique	2	004 AIGUES filtrée ESU :3/06/2021 24/06/2021 12.6°C	23	005 GUE ESU B/06/2021 4/06/2021 12.6°C	2	006 GUE filtrée ESU 3/06/2021 4/06/2021 12.6°C
ZS03G : Filtration métaux au laboratoire				Г	Effectuée			Г	Effectuée				Effectuée
			Analys	es	immédi	ate	s						
LS001 : Mesure du pH pH Température de mesure du pH LSK98 : Conductivité à 25°C Conductivité corrigée automatiquement à	°C µS/cm	*	7.6 ±0.38 21.1 1610 ±161	Γ		*	8.3 ±0.42 20.9 582 ±58			*	7.8 ±0.39 21.0 2330 ±233		
25°C Température de mesure de la conductivité	°C		21.3				21.0				21.2		
			Indice	s c	de pollut	ioi	1						
LS045 : Carbone Organique Total (COT) LS064 : Cyanures aisément libérables DN226 : Cyanures totaux	mg C/l µg/l µg/l	*	1.5 ±0.55 <10 <10			*	2.5 ±0.89 <10 <10			*	5.2 ±1.83 <10		
BN220 : Sydnaros totada	10			Má	étaux	i		H					
LSFDA: Fer (Fe)	μg/l	*	990 ±347	*	2.5 ±0.95	*	160 ±56	*	5.7 ±2.03	*	8700 ±3045	*	120 ±42
LSFE5 : Mercure (Hg)	μg/l					*	<0.01	*	<0.01	*	<0.01	*	0.02 ±0.008
LSKPN : Mercure	μg/l	*	<0.10	*	<0.10	*	<0.10	*	<0.10	*	<0.10	*	<0.10
LS151 : Antimoine (Sb) LS153 : Arsenic (As)	µg/l µg/l	*	0.38 ±0.114 9.36 ±1.872	*	0.35 ±0.105 3.15 ±0.630	*	0.93 ±0.279 4.24 ±0.848	*	0.68 ±0.204 1.99 ±0.398	*	22.0 ±6.60 118 ±24	*	1.05 ±0.315 2.66 ±0.532
LS158 : Cadmium (Cd)	μg/l	*	1.00 ±0.200	*	0.89 ±0.178	*	1.75 ±0.350	*	1.14 ±0.228	*	77.9 ±15.58	*	35.9 ±7.18

RAPPORT D'ANALYSE

Dossier N°: 21E126154

Version du : 01/07/2021

N° de rapport d'analyse : AR-21-LK-147901-01

Date de réception technique : 24/06/2021

Première date de réception physique : 24/06/2021

Référence Dossier : N° Projet : B2B LK012862

Nom Projet: Projet par défaut MyEOL (Ne pas supprimer)

Nom Commande: UMISFX20B

Référence Commande :

N° Echantillon		001	002	003	004	005	006
Référence client :		Bijournet ESO	Bijournet filtrée	AIGUES ESU	AIGUES filtrée	DIGUE ESU	DIGUE filtrée
Matrice :		ESO	ESO	ESU	ESU	ESU	ESU
Date de prélèvement :		23/06/2021	23/06/2021	23/06/2021	23/06/2021	23/06/2021	23/06/2021
Date de début d'analyse :		24/06/2021	24/06/2021	24/06/2021	24/06/2021	24/06/2021	24/06/2021
Température de l'air de l'enceinte :		12.6°C	12.6°C	12.6°C	12.6°C	12.6°C	12.6°C
			Métaux				
DN223 : Chrome (Cr)	μg/l	* <0.50	* <0.50	* <0.50	* <0.50	* 4.00 ±1.200	* <0.50
LS162 : Cuivre (Cu)	μg/l	* <0.50	* <0.50	* 1.59 ±0.318	* 0.90 ±0.180	* 90.4 ±18.08	* 2.05 ±0.410
LS116 : Nickel (Ni)	μg/l	* 9.2 ±2.30	* 9.4 ±2.35	* <2.00	* <2.00	* 11.6 ±2.90	* 4.0 ±1.00
LS184 : Plomb (Pb)	μg/l	* <0.50	* <0.50	* 58.4 ±14.60	* 10.5 ±2.63	* 2700 ±675	* 32.5 ±8.13
LS112 : Zinc (Zn)	μg/l	* 1920 ±576	* 1900 ±570	* 312 ±94	* 151 ±45	* 15500 ±4650	* 5120 ±1536

D : détecté / ND : non détecté

z2 ou (2) : zone de contrôle des supports

Observations	N° Ech	Réf client
La conformité relative à la température relevée pendant le transport des échantillons n'est pas remplie.	(001) (002) (003) (004) (005) (006)	Bijournet ESO / Bijournet filtrée / AIGUES ESU / AIGUES filtrée / DIGUE ESU / DIGUE filtrée /
La filtration a été réalisée préalablement à l'analyse des métaux.	(002) (004) (006)	Bijournet filtrée / AIGUES filtrée / DIGUE filtrée /

Nº 1- 1488

RAPPORT D'ANALYSE

Dossier N°: 21E126154

N° de rapport d'analyse : AR-21-LK-147901-01

Référence Dossier : N° Projet : B2B LK012862

Nom Projet: Projet par défaut MyEOL (Ne pas supprimer)

Nom Commande : UMISFX20B Référence Commande :

Jean-Paul Klaser Chef d'Equipe Coordinateur de Projets Clients

Version du : 01/07/2021

Date de réception technique : 24/06/2021

Première date de réception physique : 24/06/2021

La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 7 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Les résultats et conclusions éventuelles s'appliquent à l'échantillon tel qu'il a été reçu. Les données transmises par le client pouvant affecter la validité des résultats (la date de prélèvement, la matrice, la référence échantillon et autres informations identifiées comme provenant du client), ne sauraient engager la responsabilité du laboratoire. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Lors de l'émission d'une nouvelle version de rapport, toute modification est identifiée par une mise en forme gras, italique et souligné.

Lors de l'emission d'une nouvelle version de rapport, toute modification est identifiée par une mise en forme gras, italique et souligne. L'information relative au seuil de détection d'un paramètre n'est pas couverte par l'accréditation Cofrac.

Les résultats précédés du signe < correspondent aux limites de quantification, elles sont la responsabilité du laboratoire et fonction de la matrice.

Tous les éléments de traçabilité et incertitude (déterminée avec k = 2) sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé par le ministre chargé de l'environnement - se reporter à la liste des laboratoires sur le site internet de gestion des agréments du ministère chargé de l'environnement : http://www.labeau.ecologie.gouv.fr

Laboratoire agréé pour la réalisation des analyses des paramètres du contrôle sanitaire des eaux – portée détaillée de l'agrément disponible sur demande.

Annexe technique

Dossier N° :21E126154N° de rapport d'analyse : AR-21-LK-147901-01

Emetteur : Madame Elise DELPECH Commande EOL : 006-10514-754771

Nom projet : N° Projet : B2B LK012862 Référence commande :

Projet par défaut MyEOL (Ne pas supprimer) Nom Commande : UMISFX20B

Eau de surface

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site de :
DN223	Chrome (Cr)	ICP/MS - NF EN ISO 17294-2	0.5	μg/l	Eurofins Analyses pour l'Environnement France
DN226	Cyanures totaux	Flux continu [Flux continu] - NF EN ISO 14403-2	10	μg/l	7
LS001	Mesure du pH	Potentiométrie - NF EN ISO 10523			1
	рН				
	Température de mesure du pH			°C	
LS045	Carbone Organique Total (COT)	Spectrophotométrie (IR) [Oxydation à chaud en milieu acide] - NF EN 1484	0.5	mg C/I]
LS064	Cyanures aisément libérables	Flux continu - NF EN ISO 14403-2	10	μg/l	
LS112	Zinc (Zn)	ICP/MS - NF EN ISO 17294-2	5	μg/l	7
LS116	Nickel (Ni)	1	2	μg/l	_
LS151	Antimoine (Sb)		0.2	μg/l	_
LS153	Arsenic (As)	1	0.2	μg/l	_
LS158	Cadmium (Cd)	1	0.2	μg/l	_
LS162	Cuivre (Cu)		0.5	μg/l	_
LS184	Plomb (Pb)	1	0.5	μg/l	
LSFDA	Fer (Fe)	1	1	μg/l	7
LSFE5	Mercure (Hg)		0.01	μg/l	_
LSK98	Conductivité à 25°C	Potentiométrie [Méthode à la sonde] - NF EN 27888]
	Conductivité corrigée automatiquement à 25°C		15	μS/cm	
	Température de mesure de la conductivité			°C	
LSKPN	Mercure	ICP/MS - NF EN ISO 17294-2	0.1	μg/l	1
ZS03G	Filtration métaux au laboratoire	Filtration - Méthode interne			1

Eau souterraine

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site de :
DN223	Chrome (Cr)	ICP/MS - NF EN ISO 17294-2	0.5	μg/l	Eurofins Analyses pour l'Environnement France
DN226	Cyanures totaux	Flux continu [Flux continu] - NF EN ISO 14403-2	10	μg/l	
LS001	Mesure du pH pH Température de mesure du pH	Potentiométrie - NF EN ISO 10523		°C	
LS045	Carbone Organique Total (COT)	Spectrophotométrie (IR) [Oxydation à chaud en milieu acide] - NF EN 1484	0.5	mg C/I	

Annexe technique

Dossier N° :21E126154N° de rapport d'analyse : AR-21-LK-147901-01

Emetteur : Madame Elise DELPECH Commande EOL : 006-10514-754771

Nom projet : N° Projet : B2B LK012862 Référence commande : Projet par défaut MyEOL (Ne pas supprimer)

Nom Commande: UMISFX20B

Eau souterraine

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site de :
LS064	Cyanures aisément libérables	Flux continu - NF EN ISO 14403-2	10	μg/l	
LS112	Zinc (Zn)	ICP/MS - NF EN ISO 17294-2	5	μg/l	
LS116	Nickel (Ni)	1	2	μg/l	
LS151	Antimoine (Sb)	1	0.2	μg/l	
LS153	Arsenic (As)		0.2	μg/l	
LS158	Cadmium (Cd)	1	0.2	μg/l	
LS162	Cuivre (Cu)]	0.5	μg/l	
LS184	Plomb (Pb)	1	0.5	μg/l	
LSFDA	Fer (Fe)	1	1	μg/l	
LSK98	Conductivité à 25°C Conductivité corrigée automatiquement à 25°C Température de mesure de la conductivité	Potentiométrie [Méthode à la sonde] - NF EN 27888	15	μS/cm °C	
LSKPN	Mercure	ICP/MS - NF EN ISO 17294-2	0.1	μg/l	
ZS03G	Filtration métaux au laboratoire	Filtration - Méthode interne			

Annexe de traçabilité des échantillons

Cette traçabilité recense les flaconnages des échantillons scannés dans EOL sur le terrain avant envoi au laboratoire

Dossier N°: 21E126154 N° de rapport d'analyse : AR-21-LK-147901-01

Emetteur : Commande EOL : 006-10514-754771

Nom projet : N° Projet : B2B LK012862 Référence commande :

Projet par défaut MyEOL (Ne pas supprimer)

Nom Commande: UMISFX20B

Eau de surface

N° Ech	Référence Client	Date & Heure Prélèvement	Date de Réception Physique (1)	Date de Réception Technique (2)	Code-Barre	Nom Flacon
003	AIGUES ESU	23/06/2021	24/06/2021	24/06/2021		
004	AIGUES filtrée	23/06/2021	24/06/2021	24/06/2021		
005	DIGUE ESU	23/06/2021	24/06/2021	24/06/2021		
006	DIGUE filtrée	23/06/2021	24/06/2021	24/06/2021		

Eau souterraine

N° Ech	Référence Client	Date & Heure Prélèvement	Date de Réception Physique (1)	Date de Réception Technique (2)	Code-Barre	Nom Flacon
001	Bijournet ESO	23/06/2021	24/06/2021	24/06/2021		
002	Bijournet filtrée	23/06/2021	24/06/2021	24/06/2021		

(1): Date à laquelle l'échantillon a été réceptionné au laboratoire.
 Lorsque l'information n'a pas pu être récupérée, cela est signalé par la mention N/A (non applicable).

(2): Date à laquelle le laboratoire disposait de toutes les informations nécessaires pour finaliser l'enregistrement de l'échantillon.

MINELIS
Madame Elise DELPECH
8 rue paulin talabot
31000 TOULOUSE

RAPPORT D'ANALYSE

Dossier N°: 21E126409 Version du: 12/07/2021

N° de rapport d'analyse : AR-21-LK-155983-01 Date de réception technique : 24/06/2021

Première date de réception physique : 24/06/2021

Référence Dossier : N° Projet : B2B LK012862

Nom Projet: Projet par défaut MyEOL (Ne pas supprimer)

Nom Commande : UMISFX20B

Référence Commande :

Coordinateur de Projets Clients : Marion Medina / MarionMedina@eurofins.com / +33 64974 5158

N° Ech	Matrice		Référence échantillon
001	Sédiments	(SED)	AIGUES SED
002	Sédiments	(SED)	HALDES SED
003	Sédiments	(SED)	DIGUE SED
004	Sédiments	(SED)	SORTIE BASSIN
005	Sédiments	(SED)	BIJOURNET SED

RAPPORT D'ANALYSE

Dossier N°: 21E126409

Version du : 12/07/2021

N° de rapport d'analyse : AR-21-LK-155983-01

Date de réception technique : 24/06/2021

Première date de réception physique : 24/06/2021

Référence Dossier : N° Projet : B2B LK012862

Nom Projet: Projet par défaut MyEOL (Ne pas supprimer)

Nom Commande: UMISFX20B

Référence Commande :

Matrice : SED 30/06/2021 30/06/20	SED SED 6/2021 06/2021 0.4°C
XXS06 : Prétraitement et séchage à 40°C LSA07 : Matière sèche	
séchage à 40°C LSA07 : Matière sèche % P.B. * 52.8 ±2.64 * 81.8 ±4.09 * 81.0 ±4.05 * 64.5 ±3.23 * 68.23 XXS07 : Refus Pondéral à 2 mm % P.B. * 38.9 * 20.6 * 16.3 * 19.9 *	
XXS07 : Refus Pondéral à 2 mm	
Analyses immédiates	33.0
,,	
LSL4H : pH H2O pH extrait à l'eau 8.1 8.2 8.1 8.00	8.4
Température de mesure du pH °C 21 21 21 21	21
LSL42 : Conductivité sur brut Conductivité corrigée automatiquement à µS/cm 891 481 1080 264 25°C (brut Température de mesure de la conductivité °C 20.5 20.8 20.9 20.5	500 20.9
Indices de pollution	
LS910 : Cyanures aisément mg/kg M.S. <0.5 <0.5 <0.5 libérables (= Cyanures libres)	<0.5
LS917 : Cyanures totaux mg/kg M.S. <0.5 <0.5 <0.5	<0.5
LSSKM : Carbone organique total mg/kg M.S. * 31300 ± 6151 * 40700 ± 7993 * 54900 ± 10777 * 61200 ± 12013 * 2680 ± 1000 (COT) par combustion sèche (Sédiments)	900 ±5290
Métaux Métaux	
XXS01 : Minéralisation eau régale - Bloc chauffant LS863 : Antimoine (Sb) mg/kg M.S. * - * - * - * the state of th	- 6.7 ±5.84
25555 // 11.11.11.15 (42)	319 ±70

RAPPORT D'ANALYSE

Dossier N°: 21E126409

Version du : 12/07/2021 N° de rapport d'analyse : AR-21-LK-155983-01

Première date de réception physique : 24/06/2021

Date de réception technique : 24/06/2021

Référence Dossier : N° Projet : B2B LK012862

Nom Projet: Projet par défaut MyEOL (Ne pas supprimer)

Nom Commande: UMISFX20B

Référence Commande :

N° Echantillon			001		002		003		004		005	
Référence client :		AIG	BUES SED	H.	ALDES SED	C	IGUE SED		SORTIE	ВІ	JOURNET	
									BASSIN		SED	
Matrice :			SED		SED		SED		SED		SED	
Date de prélèvement :		23	3/06/2021	2	3/06/2021	2	23/06/2021	2	23/06/2021	2	3/06/2021	
Date de début d'analyse :		30	0/06/2021	3	30/06/2021	(30/06/2021	;	30/06/2021	3	0/06/2021	
Température de l'air de l'enceinte :			10.4°C		10.4°C		10.4°C		10.4°C		10.4°C	
Métaux												
LS870 : Cadmium (Cd)	mg/kg M.S.	*	55.5 ±16.65	*	31.0 ±9.30	*	33.3 ±9.99	*	19.2 ±5.76	*	22.1 ±6.63	
LS872 : Chrome (Cr)	mg/kg M.S.	*	15.0 ±2.82	*	6.13 ±2.290	*	5.99 ±2.285	*	16.9 ±2.97	*	18.1 ±3.07	
LS874 : Cuivre (Cu)	mg/kg M.S.	*	136 ±21	*	67.8 ±10.45	*	34.7 ±5.73	*	32.4 ±5.41	*	45.6 ±7.24	
LS876 : Fer (Fe)	mg/kg M.S.	*	63300 ±9495	*	53400 ±8010	*	44800 ±6720	*	39900 ±5985	*	50400 ±7560	
LS881 : Nickel (Ni)	mg/kg M.S.	*	14.9 ±2.12	*	6.05 ±0.926	*	5.12 ±0.809	*	13.7 ±1.95	*	45.0 ±6.31	
LS883 : Plomb (Pb)	mg/kg M.S.	*	7390 ±2217	*	4620 ±1386	*	1550 ±465	*	1330 ±399	*	1080 ±324	
LS894 : Zinc (Zn)	mg/kg M.S.	*	15600 ±3276	*	6190 ±1300	*	7330 ±1539	*	6050 ±1271	*	8440 ±1772	
LSA09 : Mercure (Hg)	mg/kg M.S.	*	4.62 ±0.924	*	2.46 ±0.492	*	1.13 ±0.226	*	0.87 ±0.174	*	0.64 ±0.128	

D : détecté / ND : non détecté

z2 ou (2) : zone de contrôle des supports

Date de réception technique : 24/06/2021

Première date de réception physique : 24/06/2021

RAPPORT D'ANALYSE

Version du : 12/07/2021

Dossier N°: 21E126409

N° de rapport d'analyse : AR-21-LK-155983-01

Référence Dossier : N° Projet : B2B LK012862

Nom Projet: Projet par défaut MyEOL (Ne pas supprimer)

Nom Commande : UMISFX20B Référence Commande :

Anne Biancalana
Coordinatrice de Projets Clients

La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 6 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Les résultats et conclusions éventuelles s'appliquent à l'échantillon tel qu'il a été reçu. Les données transmises par le client pouvant affecter la validité des résultats (la date de prélèvement, la matrice, la référence échantillon et autres informations identifiées comme provenant du client), ne sauraient engager la responsabilité du laboratoire. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Lors de l'émission d'une nouvelle version de rapport, toute modification est identifiée par une mise en forme gras, italique et souligné.

L'information relative au seuil de détection d'un paramètre n'est pas couverte par l'accréditation Cofrac.

Les résultats précédés du signe < correspondent aux limites de quantification, elles sont la responsabilité du laboratoire et fonction de la matrice.

Tous les éléments de traçabilité et incertitude (déterminée avec k = 2) sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé par le ministre chargé de l'environnement - se reporter à la liste des laboratoires sur le site internet de gestion des agréments du ministère chargé de l'environnement : http://www.labeau.ecologie.gouv.fr

Laboratoire agréé pour la réalisation des analyses des paramètres du contrôle sanitaire des eaux – portée détaillée de l'agrément disponible sur demande.

Annexe technique

Dossier N° :21E126409 N° de rapport d'analyse : AR-21-LK-155983-01

Emetteur : Madame Elise DELPECH Commande EOL : 006-10514-754767

Nom projet : N° Projet : B2B LK012862 Référence commande :

Projet par défaut MyEOL (Ne pas supprimer) Nom Commande : UMISFX20B

Sédiments

Code	Analyse	Duinaina at vátávanas de la	LQI	Unité	Dreatation václicás sur la
Code	Analyse	Principe et référence de la	LQI	Unite	Prestation réalisée sur le
		méthode			site de :
LS863	Antimoine (Sb)	ICP/AES [Minéralisation à l'eau régale] - NF EN ISO 11885 - NF EN ISO 54321(sol,boue) Méthode interne(autres)	1	mg/kg M.S.	Eurofins Analyses pour l'Environnement France
LS865	Arsenic (As)	1	1	mg/kg M.S.	
LS870	Cadmium (Cd)	Ī i	0.4	mg/kg M.S.	
LS872	Chrome (Cr)	1	5	mg/kg M.S.	
LS874	Cuivre (Cu)	1	5	mg/kg M.S.	
LS876	Fer (Fe)	1	5	mg/kg M.S.	
LS881	Nickel (Ni)	1	1	mg/kg M.S.	
LS883	Plomb (Pb)	1	5	mg/kg M.S.	
LS894	Zinc (Zn)	1	5	mg/kg M.S.	
LS910	Cyanures aisément libérables (= Cyanures libres)	Flux continu [Extraction basique et dosage par flux continu] - NF EN ISO 17380+NF EN ISO 14403-2 (adapt. BO/SED)	0.5	mg/kg M.S.	
LS917	Cyanures totaux	,	0.5	mg/kg M.S.	
LSA07	Matière sèche	Gravimétrie - NF EN 12880	0.1	% P.B.	
LSA09	Mercure (Hg)	SFA / vapeurs froides (CV-AAS) [Minéralisation à l'eau régale] - NF EN ISO 54321(sol.boue) Méthode interne(autres) - NF ISO 16175-2 (boue) - NF ISO 16772 (sol)	0.1	mg/kg M.S.	
LSL42	Conductivité sur brut Conductivité corrigée automatiquement à 25°C (brut Température de mesure de la conductivité	Potentiométrie [Méthode à la sonde] - Adaptée de NF EN 27888	15	μS/cm °C	
LSL4H	pH H2O pH extrait à l'eau Température de mesure du pH	Potentiométrie - Ad. NF ISO 10390 (SED) NF EN 12176 (abrogée,BOU)		°C	
LSSKM	Carbone organique total (COT) par combustion sèche (Sédiments)	Combustion [sèche] - NF EN 15936 - Méthode B	1000	mg/kg M.S.	
XXS01	Minéralisation eau régale - Bloc chauffant	Digestion acide -			
XXS06	Prétraitement et séchage à 40°C	Séchage [Le laboratoire travaillera sur la fraction <à 2mm de l'échantillon sauf demande explicite du client] - NF ISO 11464 (Boue et sédiments)			
XXS07	Refus Pondéral à 2 mm	Tamisage [Le laboratoire travaillera sur la fraction <à 2mm de l'échantillon sauf demande explicite du client] -	1	% P.B.	

Annexe de traçabilité des échantillons

Cette traçabilité recense les flaconnages des échantillons scannés dans EOL sur le terrain avant envoi au laboratoire

Dossier N°: 21E126409 N° de rapport d'analyse : AR-21-LK-155983-01

Emetteur: Commande EOL: 006-10514-754767

Nom projet : N° Projet : B2B LK012862 Référence commande :

Projet par défaut MyEOL (Ne pas supprimer)

Nom Commande: UMISFX20B

Sédiments

N° Ech	Référence Client	Date & Heure Prélèvement	Date de Réception Physique (1)	Date de Réception Technique (2)	Code-Barre	Nom Flacon
001	AIGUES SED	23/06/2021	24/06/2021	24/06/2021		
002	HALDES SED	23/06/2021	24/06/2021	24/06/2021		
003	DIGUE SED	23/06/2021	24/06/2021	24/06/2021		
004	SORTIE BASSIN	23/06/2021	24/06/2021	24/06/2021		
005	BIJOURNET SED	23/06/2021	24/06/2021	24/06/2021		

(1): Date à laquelle l'échantillon a été réceptionné au laboratoire.
 Lorsque l'information n'a pas pu être récupérée, cela est signalé par la mention N/A (non applicable).

(2): Date à laquelle le laboratoire disposait de toutes les informations nécessaires pour finaliser l'enregistrement de l'échantillon.

ANNEXE 5 : Fiches de prélèvements ESU

FICHE DE PRELEVEMENT EAU SUPERFICIELLE (A220)

Site: UMISFX-AVAL_DIGUE

Date: 23/06/2021

ED

Heure: 12h45

20210623-Fiches prélèvement - Eaux superficielles - A220_2001

N° échant. : ND

Opérateurs :

Localisation (berge, milieu du lit...):

Système de coordonnées : WGS84

Latitude: 44,047263 Longitude: 3,938357

Altitude: 319 m NGF

Description:

Mesures in situ:

Périodicité du suivi : Mensuel

Etat de l'ouvrage : Eau stagnante, présence de surnageant/matière en suspension

Nature du substratum : Calcaire

Date du dernier prélèvement :

24/02/2021 Matériel d'analyse in situ :

Matériel utilisé (manuelle : flacon, sceau - automatique) : Bécher PE Sonde pH, conductivité et température

Observations (aspect de l'eau, indices organoleptiques) : Sédiments ocres/gris

Conditions météorologiques (étiage, crue, pluie) : Couvert

pH: 7,67

Conductivité : 2335 µS/cm

Température de l'eau : 17,1°C °C

Débit : ND m³/h

Volumes prélevés : 1 litre

Type de flaconnage : flaconnage Eurofins

Flaconnage (verre/plastique) : Présence de stabilisant (oui/non) :

Type de stabilisant :

Mesures en laboratoire :

effectuées par : Eurofins

Référence matériel d'analyse :

pH-Mètre HI98130, Hanna Instruments

Conservation des échantillons : Glacière avec pains de glaces le : 24/06/2021

Envoyés / Récupérés le : 23/06/2021

Réceptionnés au labo le : 24/06/2021

Analyses demandées : Sb, Fe, Cd, Cu, As, Ni, Pb, Cr, Hg, Zn sur filtré et total, COT, Cyanures

HCl, HNO3, NaOH

HCl, HNO3, NaOH

OUI/NON

Résultats d'analyses : reçus le : 01/07/2021

support : Rapport PDF et synthèse excel

Remarques diverses : Code barre:

Bassin de décantation en eau - Eau stagnante présence de surnageant/matières en suspension

FICHE DE PRELEVEMENT EAU SUPERFICIELLE (A220)

Site: UMISFX-AVAL_AIGUES

Date: 23/06/2021

Heure: 9h00

N° échant.: ND

Opérateurs: ED

20210623-Fiches prélèvement - Eaux superficielles - A220_2001

Localisation (berge, milieu du lit...):

Système de coordonnées: WGS84

Latitude: 44,056944 Longitude: 3,936601

Altitude: 220 m NGF

Description :

Périodicité du suivi : Mensuel

Etat de l'ouvrage : Cours d'eau

Nature du substratum : Calcaire

Mesures in situ:

Date du dernier prélèvement : 19/05/2021

Matériel utilisé (manuelle : flacon, sceau - automatique) : Bécher PE

Observations (aspect de l'eau, indices organoleptiques) : Sédiments ocres

Conditions météorologiques (étiage, crue, pluie) : Couvert

8,33

pH: 8,33

Conductivité : 592 µS/cm

Température de l'eau :

Débit : ND

Volumes prélevés : 1 litre

Matériel d'analyse in situ :

Sonde pH, conductivité et température

Référence matériel d'analyse :

pH-Mètre HI98130, Hanna Instruments

Type de flaconnage : flaconnage Eurofins

Flaconnage (verre/plastique): Verre et plastique
Présence de stabilisant (oui/non): OUI/NON
Type de stabilisant: HCI, HNO3, NaOH

Mesures en laboratoire : effectuées par : Eurofins

Conservation des échantillons : Glacière avec pains de glaces le : 24/06/2021

°C

m³/h

Envoyés / Récupérés le : 23/06/2021

Réceptionnés au labo le : 24/06/2021

Analyses demandées : Sb, Fe, Cd, Cu, As, Ni, Pb, Cr, Hg, Zn sur filtré et total, COT, Cyanures

Résultats d'analyses : reçus le : 01/07/2021

support : Rapport PDF et synthèse excel

Remarques diverses : Code barre:

FICHE DE PRELEVEMENT EAU SUPERFICIELLE (A220)

Site: UMISFX-SORTIE_BASSIN

Date: 23/06/2021

ED

ND Heure: ND N° échant. :

Matériel d'analyse in situ :

Référence matériel d'analyse :

ND

ND

Opérateurs :

20210623-Fiches prélèvement - Eaux superficielles - A220_2001

Localisation (berge, milieu du lit...):

Système de coordonnées : WGS84

Latitude : 44,046709 Longitude: 3,936098

Altitude : 348 m NGF

Description:

Périodicité du suivi : Mensuel

Etat de l'ouvrage : Pas d'écoulement d'eau

Nature du substratum : Calcaire

Mesures in situ:

ND Date du dernier prélèvement :

Matériel utilisé (manuelle : flacon, sceau - automatique) : ND

Observations (aspect de l'eau, indices organoleptiques) : ND

Conditions météorologiques (étiage, crue, pluie) :

ND : Ha

ND Conductivité :

ND Température de l'eau :

°C ND

Débit :

Volumes prélevés : ND

Type de flaconnage : flaconnage Eurofins

Flaconnage (verre/plastique) : ND Présence de stabilisant (oui/non) : ND Type de stabilisant : ND

Mesures en laboratoire : effectuées par : Eurofins

μS/cm

m³/h

Conservation des échantillons : Glacière avec pains de glaces le: ND

Envoyés / Récupérés le : ND

Réceptionnés au labo le : ND

Analyses demandées : ND

Résultats d'analyses : reçus le : ND

support : Rapport PDF et synthèse excel

Remarques diverses: Code barre:

FICHE DE PRELEVEMENT EAU SUPERFICIELLE (A220)

Site: UMISFX-AVAL_HALDES

Date: 23/06/2021

Heure: ND

N° échant.: ND

Matériel d'analyse in situ :

Référence matériel d'analyse :

ND

20210623-Fiches prélèvement - Eaux superficielles - A220_2001

Opérateurs :

Localisation	(berge, m	ilieu du lit)	:
--------------	-----------	---------------	---

Système de coordonnées : WGS84

Latitude: 44,047228 Longitude: 3,938627

Altitude : 317 m NGF

Description :

Périodicité du suivi : Mensuel

Etat de l'ouvrage : Pas d'écoulement d'eau

Nature du substratum : Calcaire

Mesures in situ:

: Ha

Volumes prélevés :

Date du dernier prélèvement :

Matériel utilisé (manuelle : flacon, sceau - automatique) : ND ND

ND

ND

Observations (aspect de l'eau, indices organoleptiques): ND

Conditions météorologiques (étiage, crue, pluie) : Couvert

ND μS/cm

Température de l'eau : ND °C

ND ND

Débit : m³/h

Type de flaconnage : flaconnage Eurofins

Flaconnage (verre/plastique) : ND
Présence de stabilisant (oui/non) : ND
Type de stabilisant : ND

Mesures en laboratoire : effectuées par : Eurofins

Conservation des échantillons : Glacière avec pains de glaces le : ND

Envoyés / Récupérés le : ND

Réceptionnés au labo le : ND

Analyses demandées : ND

Résultats d'analyses : reçus le : ND

support : Rapport PDF et synthèse excel

Remarques diverses : Code barre:

ANNEXE 6 : Fiches de prélèvements ESO

Altitude (m NGF):

FICHE DE PRELEVEMENT EAU SOUTERRAINE (A210)

Source du Site: Bijournet Forage / Piezo n°: Source Date-Heure: 23/06/2021 10h45

Périodicité du suivi : Mensuel 20210623-Fiches prélèvement - Eaux souterraines - A210_2001 Opérateur :

ΝE

Système de coordonnées : Conditions météo : Couvert

255m

Latitude : 44,04666 Longitude: 3,92804

Description de l'ouvrage : Date de création :

A = Diamètre de l'ouvrage NE B = Hauteur entre le haut du tube (repère pour mesure du niveau

statique) et le terrain : ND C = Hauteur du tube plein : ΝE

D = Hauteur de l'ouvrage : NE E = Hauteur entre la crépine et le fond de l'ouvrage : NE

= = Largeur de l'ouvrage (tube + massif filtrant) : NE Vm = Volume au mètre du puits :

/p = Volume du puits (entre niveau piezo et base des crépines) (L) : NE Matériau du tube et des crépines :

Duverture des crépines (mm) : ND Nature du massif filtrant : ND

Transmissivité :

Rabattement spécifique (h du rabattement/débit pompé): Instructions - Procédures de prélèvement Procédures réalisées - Mesures in situ : PURGE PURGE Matériel : nature des matériaux constitutifs : Mesures à faire avant toute opération : ompe: ND G = Niveau eau (m/repère): H = Fond forage (m/repère): Tuyaux: ND Paramètres mesurés ou observés : ND Mesure de débit : Présence de phase libre plongeant/surnageant (cm) : ND ND Procédure : Temps de purge (min): ND ND Vol. purgé (L): Position de la pompe (pompe fixe) : m/repère ND Débit de la purge (m³/h) : Colonne d'eau "balayée" par la pompe : entre et et Observations: Durée de la purge (min) : Aucune purge n'est réalisée, prélèvement effectuée à 20 m de la résurgence Mesures avant purge: Débit de purge (L/min) : m3/h Volume à purger :L Température de l'eau : ND ND $\mu S/cm$ à°C Rabattement max (m/repère) = ND Conductivité: Lieu de rejet de l'eau purgée : ND Oxygène dissous: ND g/L - % O₂ Paramètres à contrôler : Température - Conductivité - Oxygène pH: ND Redox (mV): ND pH - Redox - Turbidité - Couleur - Odeur Turbidité : Claire NON Autres consignes : Couleur: Rouille Odeur: **PRELEVEMENTS PRELEVEMENTS** Matériel : nature des matériaux constitutifs : Niveau de l'eau avant prélèvement : ND Echantilloneur : Câble ou filin : Débit du prélèvement : ND L/min Heure de début : Pompe :Tuyaux : ND Mesure de débit : Température de l'eau : 14.4°C °C Température de l'air : 25°C °C Procédure: Position de la pompe : m/repère Conductivité : 1578 μS/cm à°C Débit du prélèvement :L/min Oxygène dissous: ND g/L - % O₂ Niveau du prélèvement (préleveur) : m/repère : Ha 7,49 Redox (mV): Débuter le prélèvement après : Turbidité : Claire Blanc terrain : Nettoyage du matériel avec : Couleur : Rouille Odeur: NON Autres consignes : Observations:

Mesures en laboratoire : Effectuées par : Eurofins Conservation des échantillons : Date: 24/06/2021 Glacière avec pains de glace

Envoyés / récupérés le : 23/06/2021

FLACONNAGE

Verre et PE

HCl, HNO3, NaOH

Flaconnage (plastique/verre) :

Type de stabilisant :

Présence de stabilisant (oui/non): OUI/NON

Sb, Fe, Cd, Cu, As, Ni, Pb, Cr,

Analyses demandées : Hg, Zn sur filtré et total, COT, Réceptionnés au laboratoire le : 24/06/2021

Matériels :

Références matériels :

Cyanures

MATERIEL

Waterproof pen tester

7200pH/Cond/TDS/Salt/Temp

Résultats d'analyses : reçus le : 01/07/2021

support: Mail

Remarques diverses : Prélévement effectué à environ 20 m de la résurgence

ANNEXE 7 : Fiches de prélèvements SED

UMISFX-SORTIE_BASSIN Site:

Date : 23/06/2021

Opérateur : ED

SORTIE BASSIN REGULATION

20210623-Fiches prélèvement - Sédiment - A220_2001

Photos du prélèvement :

Conditions météo :

Coordonnées GPS (Lambert 93)

3,93610 775205,4 44,04671 6328026,7

348,00 $\underline{\text{Echantillon moven}}:$

Pelle à main Outil de prélèvement : Nombre de prélèvements : 2 Mise en flacons : Flacon en verre

Mesure de Terrain :

Matériel : NON Référence matériel : ND

Observations sur les échantillons moyens									
Nature des matériaux prélevés	Indices organoleptiques	Observations diverses	Analyses réalisées						
Limons fins	Aucun	Substratum calcaire - Limons gris/ocre	Sb, Fe, Cu, Cd, Zn, As, Pb, Cr,Ni, Hg - COT - Cyanures						

Mesures en laboratoire : effectuées par : EUROFINS

30/06/2021 le :

Conservation des Glacière avec pains de glace échantillons :

Analyses demandées : Sb, Fe, Cu, Cd, Zn, As, Pb, Cr,Ni, Hg - COT - Cyanures

23/06/2021

Envoyés / Récupérés le : Réceptionnés au labo le : 24/06/2021

Résultats d'analyses : 12/07/2021 support : mail

Remarques diverses : Pas d'eau

UMISFX-SOURCE_BIJOURNET Site:

Date : 23/06/2021

Opérateur : ED SOURCE

20210623-Fiches prélèvement - Sédiment - A220_2001

Photos du prélèvement :

Conditions météo : Couvert

Coordonnées GPS (Lambert 93)

774371,9 3,92804 44,04666 6327954,6

255,00 $\underline{\text{Echantillon moven}}:$

Pelle à main Outil de prélèvement : Nombre de prélèvements : 1 Mise en flacons : Flacon en verre

Mesure de Terrain :

NON Matériel : Référence matériel : ND

Observations sur les échantillons moyens									
Nature des matériaux prélevés	Indices organoleptiques	Observations diverses	Analyses réalisées						
Limons ocres	Couleur rouille, présence d'hydroxyde de fer	Substratum calcaire - Limon ocre	Sb, Fe, Cu, Cd, Zn, As, Pb, Cr,Ni, Hg - COT - Cyanures						

Mesures en laboratoire : effectuées par : EUROFINS

30/06/2021 le:

Conservation des Glacière avec pains de glace échantillons :

Analyses demandées : Sb, Fe, Cu, Cd, Zn, As, Pb, Cr,Ni, Hg - COT - Cyanures

23/06/2021 Envoyés / Récupérés le : Réceptionnés au labo le : 24/06/2021

Résultats d'analyses : 12/07/2021 support: mail

Sédiments prélevés dans les zones "mortes", sans courant. Peu de sédiment déposé, beaucoup de matière organique (débris de Remarques diverses :

feuille, branche, herbes ...)

UMISFX-AVAL_DIGUE Site:

Date : 23/06/2021

Opérateur : ED

PIED DE DIGUE

20210623-Fiches prélèvement - Sédiment - A220_2001

Photos du prélèvement :

Conditions météo : Couvert

Coordonnées GPS (Lambert 93)

3,938357 775198,7 44,047263 6327961,1

319,00 $\underline{\text{Echantillon moven}}:$

Pelle à main Outil de prélèvement : Nombre de prélèvements : 2 Mise en flacons : Flacon en verre

Mesure de Terrain :

Matériel : NON Référence matériel : ND

Observations sur les échantillons moyens						
Nature des matériaux prélevés	Indices organoleptiques	Observations diverses	Analyses réalisées			
Limons fins	Sans	Substratum calcaire - Limons gris/ocre	Sb, Fe, Cu, Cd, Zn, As, Pb, Cr,Ni, Hg - COT - Cyanures			

Mesures en laboratoire : effectuées par : EUROFINS

30/06/2021 le:

Conservation des Glacière avec pains de glace échantillons :

Analyses demandées : Sb, Fe, Cu, Cd, Zn, As, Pb, Cr,Ni, Hg - COT - Cyanures

23/06/2021 Envoyés / Récupérés le :

Réceptionnés au labo le : 24/06/2021

Résultats d'analyses : 12/07/2021 support: mail

Remarques diverses :

Bassin de décantation en eau - Eau stagnante, présence de surnageant/matière en suspension. Prélèvement effectué dans une

zone sans eau.

Site: UMISFX-AVAL_AIGUES

Date: 23/06/2021

Opérateur : ED

Zone : AIGUES MORTES

20210623-Fiches prélèvement - Sédiment - A220_2001

Photos du prélèvement :

<u>Conditions météo :</u> Couvert

Coordonnées GPS (Lambert 93)

X 3,936601 774984,0 Y 44,056944 6329012,0

Z 220,00 Echantillon moyen :

Outil de prélèvement : Pelle à main

Nombre de prélèvements : 2

Mise en flacons : Flacon en verre

Mesure de Terrain :

Matériel : NON Référence matériel : ND

Observations sur les échantillons moyens						
Nature des matériaux prélevés	Indices organoleptiques	Observations diverses	Analyses réalisées			
Sables - limons fins	Sans	Substratum calcaire - Sables- Limons ocre	Sb, Fe, Cu, Cd, Zn, As, Pb, Cr,Ni, Hg - COT - Cyanures			

Mesures en laboratoire : effectuées par : EUROFINS

le: 30/06/2021

Conservation des échantillons : Glacière avec pains de glace

Analyses demandées : Sb, Fe, Cu, Cd, Zn, As, Pb, Cr,Ni, Hg -

COT - Cyanures

 Envoyés / Récupérés le :
 23/06/2021

 Réceptionnés au labo le :
 24/06/2021

Résultats d'analyses : 12/07/2021 support : mail

Remarques diverses : Sédiments pris dans les zones "mortes" à faible courant courant.

UMISFX-AVAL_HALDES Site:

Date : 23/06/2021

Opérateur : ED HALDES

20210623-Fiches prélèvement - Sédiment - A220_2001

Photos du prélèvement :

Conditions météo : Couvert

Coordonnées GPS (Lambert 93)

3,93863 775205,4 44,04723 6328026,7

317,00 $\underline{\text{Echantillon moven}}:$

Pelle à main Outil de prélèvement : Nombre de prélèvements : 2 Mise en flacons : Flacon en verre

Mesure de Terrain :

Matériel : NON Référence matériel : ND

Observations sur les échantillons moyens						
Nature des matériaux prélevés	Indices organoleptiques	Observations diverses	Analyses réalisées			
Limons fins	Aucun	Substratum calcaire - Limons gris/ocre	Sb, Fe, Cu, Cd, Zn, As, Pb, Cr,Ni, Hg - COT - Cyanures			

Mesures en laboratoire : effectuées par : EUROFINS

30/06/2021 le:

Conservation des Glacière avec pains de glace Analyses demandées : Sb, Fe, Cu, Cd, Zn, As, Pb, Cr,Ni, Hg - COT - Cyanures

échantillons :

Envoyés / Récupérés le : 23/06/2021 Réceptionnés au labo le : 24/06/2021

Résultats d'analyses : 12/07/2021 support : mail

Remarques diverses : Pas d'eau

ANNEXE 8 : Fiche flaconnage

Récipient	volume (ml)	stabilisant	Paramètre et volume minimum par échantillon en mL	Visuel code barre
VERRE	200 mL bouchon noir	HNO ₃	AOX	1072 000000
	250 bouchon vert	H₂SO₄	COT (25) ou COD (25) Détergents anioniques (100) Substances extractibles (25)	1002 000000
	500 bouchon bleu	aucun	HAP (500) PCB (500)	1005 000000
	60 bouchon vert	NaOH	Cyanures (20) Sulfures (20) Sulfites (20)	1004 000000
	40 bouchon vert	H ₂ SO₄	HCT GC C ₁₀ -C ₄₀ BTEX COHV HCT C ₆ -C ₁₂ Indice phénol TPH (2 vials)	1007 000000
	120 bouchon blanc	aucun	Mercure (120)	1003 000000
	500 bouchon rouge	Na ₂ SO ₃	POC (un flacon / échantillon) POP (un flacon / échantillon) POA (un flacon / échantillon) autres pesticides (2 flacons / échantillon)	¢.
Plastique	250 bouchon bleu	aucun	DBO (250) un flacon pH + conductivité TA / TAC / TH turbidité / Chlore Fluorure un flacon	1070 000000
	1000 bouchon bleu	aucun	MES / MESO (1000) Autres composés (nous consulter)	1050 000000
	60 bouchon bleu	aucun	anions, NH₄ (sur eau propre) Cr VI, métaux solubles	1080 000000
	40 bouchon blanc	HNO ₃	Métaux (hors mercure et métaux solubles)	1100 00000
	250 bouchon vert	H₂SO₄	DCO, NH ₄ (sur eau sale) N-Kjeldahl (100) indice KMnO4 (50)	1090 000000
	Liste du flaconnage pour		les échantillons de sol ou matrice solide	
Récipient	volume (ml)	Additif	Paramètre	Visuel code barre
pot de verre	375	aucun	4 paramètres courants maximum	1008 000000
Plastique	1800	aucun	Lixitest / Lixiflash / Essai de lixiviation	1600 000000
kit (1008 + 100 ml Kit COVs verre (méthanol) + carotteur)			COVs 📀	+ + +

www.minelis.com

MINELIS SAS, Société par Actions Simplifiée au capital de 30 000 Euros – Représentant légal : N. SAUZAY

8 rue Paulin Talabot, 31100 TOULOUSE – Tél : 05 61 16 54 71 – Fax : 01 73 64 69 87 – Email : contact@minelis.com

RC Toulouse B 435 308 184 00033 - APE: 7112B - TVA: FR81 435 308 184