

Digue de Saint Félix de Pallières

MINELIS	UMISFX20B	Version 1
---------	-----------	-----------

Suivi mensuel – Travaux de réhabilitation de la digue de St Félix de Pallières

Campagne du 26 août 2020

Version	Date	Corrections et modifications
1	15/10/2020	Première version

Digue de Saint Félix de Pallières

Suivi mensuel – Travaux de réhabilitation de la digue de St Félix de Pallières

Campagne du 26 août 2020

Auteurs :	MINELIS	Code du document :	UMISFX20B
Elise DELPECH		Numéro de version :	1
		Date :	05/10/2020

Identification du client : UMICORE SAS FRANCE	Référence du contrat : D20-069-06-22-UMISFX
Représentant : Jean-François FARRENQ, responsable environnement	Responsable du projet : MINELIS Chef de projet : N.SAUZAY Superviseur : C.GROSSIN

CONTRÔLE INTERNE				
Responsable du document : MINELIS	Nom et fonction : Elise DELPECH, Ingénieur environnement	Date et signature : 15/10/20		
Chef de Projet : MINELIS	Nom et fonction : Nicolas SAUZAY, Directeur Général	Date et signature : 15/10/20		
Superviseur: MINELIS	Nom et fonction : Christophe GROSSIN, Ingénieur environnement	Date et signature : 15/10/20		

PRÉAMBULE

Le présent rapport est rédigé à l'usage exclusif du client et est conforme à la proposition commerciale de MINELIS. Il est établi au vu des informations fournies à MINELIS et des connaissances techniques, réglementaires et scientifiques connues au jour de la commande. La responsabilité de MINELIS ne peut être engagée si le client lui a transmis des informations erronées ou incomplètes.

Toute utilisation partielle ou inappropriée des données contenues dans ce rapport, ou toute interprétation dépassant les conclusions émises, ne saurait engager la responsabilité de MINELIS.

SOMMAIRE

GLOSSAIRE	
Résumé non technique	10
Résumé technique	11
INTRODUCTION	12
1 Localisation du site à l'étude	13
2 Milieu d'exposition et vecteurs de transfert	1.0
2.1 Schéma conceptuel	
2.2 Sources	
2.3 Milieux et transferts	
2.4 Enjeux à protéger	
3 Suivi des eaux et sédiments	
3.1 Valeurs de référence	
3.1.1 Valeurs de références pour les eaux	
3.1.2 Valeurs de références pour les sédiments	
3.2 Données pluviométriques	
3.3 Résultats et interprétation des prélèvements	
3.3.1 Eaux de surface	
3.3.2 Eaux souterraines	
3.3.3 Sédiments	
3.4 Comparaisons avec les campagnes précédentes	
3.4.1 Eaux souterraines	
3.4.2 Eaux de surface	
3.4.3 Sédiments	
4 Préconisation	
5 CONCLUSION	32
ANNEXES	33

TABLE DES ANNEXES

ANNEXE 1	: Normes et limites analytiques sur matrice eau	35
ANNEXE 2	: Normes et limites analytiques sur matrice sédiment	37
ANNEXE 3	: Résultats d'analyses	39
ANNEXE 4	: Fiches de prélèvements ESU	40
ANNEXE 5	: Fiches de prélèvements ESO	41
ANNEXE 6	: Fiches de prélèvements SED	42
ANNEXE 7	: Fiche flaconnage	43

TABLE DES ILLUSTRATIONS

Figure 1 : Carte de situation au 1 :40 000 du site des anciennes mines de la Vieille Montagne de Sa	aint Félix de
Pallières dans son contexte hydrographique sur fond IGN	14
Figure 2 : Schéma conceptuel digue de Saint Félix de Pallières	16
Figure 3 : Localisation des points de prélèvements	18
Figure 4 : Relevé pluviométrique de la station de Thoiras (30) pour le mois d'août 2020	
Figure 5 : Comparaison des concentrations en métaux (sur dissous) en fonction des campagnes au	u droit de la source
du Bijournet	27
Figure 6 : Comparaison des concentrations en Fer (sur eau brute) en fonction des campagnes au c	droit de la source
du Rijournet	27

TABLE DES TABLEAUX

Tableau 1 : Résultats d'analyse des prélèvements d'eaux souterraines de la campagne du 26 août 2020	24
Tableau 2 : Résultats d'analyses des prélèvements de sédiments de la campagne du 26 août 2020	25
Tableau 3 : Ratio des teneurs en Cadmium sur les teneurs en Zinc pour la matrice sédiment	26
Tableau 4 : Tableau récapitulatif de l'évolution des concentrations en métaux et COT entre les campagnes of	de juin à
août 2020	29
Tableau 5 · Normes et limites analytiques	35

GLOSSAIRE

NQE : Norme de Qualité Environnementale

NQE-CMA: Norme de Qualité Environnementale - Concentration Maximale Admissible

NQE- MA: Norme de Qualité Environnementale – Moyenne Annuelle

SAGE: Schéma d'Aménagement et de Gestion des Eaux

COT: Carbone Organique Total

ESO: Eau Souterraine ESU: Eau Surface SED: Sédiment

ZNIEFF: Zone Naturelle d'Intérêt Écologique, Faunistique et Floristique

ND: Non défini

ICP/AES: Spectroscopie d'émission atomique à plasma à couplage inductif

ICP/MS: Spectroscopie de masse à plasma à couplage inductif

Résumé non technique

UMICORE a mandaté MINELIS pour surveiller les eaux superficielles et les sédiments autour de la digue d'anciens résidus miniers de Vieille Montagne à Thoiras (30) ainsi que la Source du Bijournet. La surveillance est réalisée par des campagnes mensuelles de prélèvements de matrice eaux de surface, eaux souterraines et sédiments.

Il ressort des premières campagnes que la qualité des eaux de l'Aigues-Mortes et de la source du Bijournet ne montre pas d'impact significatif pour les métaux analysés. En revanche les sédiments semblent plus impactés par les métaux, notamment pour l'Arsenic (As), le Cuivre (Cu), le Plomb (Pb), le Zinc (Zn), le Mercure (Hg) et le Cadmium (Cd) plus spécifiquement au niveau de l'Aigues Mortes en aval de la digue, au pied de la digue et à la sortie des Haldes.

Une analyse des rapports des teneurs en [Cd]/[Zn], fait ressortir 2 groupes géochimiques distincts :

- AVAL_AIGUES, AVAL_DIGUE, AVAL_HALDES et SORTIE_BASSIN: similaires aux polluants présents dans la digue;
- Source du BIJOURNET : signature différente de celle des échantillons prélevés en aval de la digue.

Cette campagne est la troisième réalisée dans le cadre du suivi environnemental du site au cours de la réhabilitation qui a lieu sur le site de l'ancienne mine de Saint-Félix-de-Pallières localisée sur la commune de Thoiras.

Les résultats des campagnes précédentes sont disponibles dans les rapports suivants :

- UMISFX20B_Campagne de référence_V.1 (réalisée le 26 juin 2020);
- UMISFX20B_Campagne du_0729_V.1 (réalisée le 29 juillet 2020).

Résumé technique

Synthèse		
Client	UMICORE FRANCE	
Site	Saint Félix de Pallières - Thoiras	
Contexte de l'étude	3ème campagne de prélèvement réalisée le 26 août 2020 – suivi mensuel Surveillance des eaux superficielles, des eaux souterraines et des sédiments autour de la digue d'anciens résidus miniers de Vieille Montagne ainsi que la Source du Bijournet.	
Prestation élémentaire et/ou sédiments	A220 —Prélèvements, mesures, observations et/ou analyses sur les eaux superficielles	
Eaux superficielles	 Analyses mensuelles: AVAL_AIGUES, AVAL_DIGUE, AVAL_HALDES et SORTIE_BASSIN ruisseau à sec, aucun écoulement d'eau 	
Résultats analytiques	 Compte tenu du régime hydrique de la région, aucun prélèvement d'eau de surface n'a pu être réalisé lors de cette campagne 	
Sédiments	 Analyses mensuelles: Prélèvements au droit d'AVAL_AIGUES, AVAL_DIGUE, AVAL_HALDES, SORTIE_BASSIN et SOURCE DU BIJOURNET. 	
Résultats analytiques	 Les concentrations en As, Cd, Zn et Pb dépassent les valeurs de référence (3) pour l'ensemble des échantillons à l'exception de SORTIE_BASSIN; Les concentrations en Hg et Cu dépassent les valeurs de références (3) pour les prélèvements AVAL_AIGUES, AVAL_HALDES et AVAL_DIGUE; La concentration en Ni pour l'échantillon BIJOURNET est supérieure à la valeur de référence (3). 	
Prestation élémentaire	A210 - prélèvements, mesures, observations et /ou analyses sur les eaux souterraines	
Eaux souterraines	- Analyses mensuelles : Prélèvement au droit de la SOURCE DU BIJOURNET	
Résultats analytiques	 Les résultats de la campagne d'août 2020 ne dépassent pas les valeurs seuils retenues au niveau national. 	
Conclusion et préconisa	tions	
Eaux superficielles	ESU	
Eaux souterraines	- Aucun prélèvement d'eaux de surface n'a été effectué en août 2020.	
Sédiments	ESO	
	 D'après les normes de qualité environnementale (NQE) les eaux de la source du Bijournet sont classées comme en « Bon état chimique » pour les paramètres analysés. L'évolution des concentrations en métaux lourds analysés semblent être 	
	stable au cours des différentes campagnes de prélèvement.	
	SED	
	- Concernant l'évolution des concentrations en métaux lourds analysés dans la	
	 matrice sédiment entre juillet et août 2020, il est à noter principalement que : Au droit d'AVAL_AIGUES, les concentrations en métaux lourds ont tendance à diminuer ; 	
	 Au droit d'AVAL_HALDES, les concentrations en métaux lourds ont tendance à augmenter; 	
	 Au droit de la source du Bijournet et d'AVAL_DIGUE, les concentrations en métaux lourds sont stables, à l'exception des concentrations en Plomb qui ont augmenté; 	
	 De manière générale, les concentrations en métaux lourd au droit de SORTIE_BASSIN sont stables au cours des campagnes. 	
	 La variabilité de répartition spatiale des sédiments peut entraîner des variations dans les concentrations pour les éléments analysés. Par ailleurs, lors du mois d'août presque aucune précipitation n'a été enregistrée sur le chantier, limitant ainsi de potentiels transferts de polluants. 	

INTRODUCTION

Dans le cadre de la réalisation des travaux de reprofilage et de confinement de la digue à résidus miniers de l'ancienne mine de Saint-Félix-de-Pallières localisée sur la commune de Thoiras, un programme de surveillance a été établi conformément à l'arrêté préfectoral n°30-2020-06-24-002.

Cet arrêté définit en particulier les modalités de surveillance des effets des travaux sur l'environnement (article 4.2), par l'intermédiaire de prélèvements d'eaux souterraines, d'eaux de surface et de sédiments et par le suivi et l'analyse de l'envol des poussières. Cet arrêté a été établi le 30 juin 2020.

L'objectif est de contrôler l'état :

- Des eaux de surface et des sédiments à l'aide de prélèvements moyens mensuels :
 - ✓ À 1,2 km en aval de la digue sur l'Aigues Mortes (AVAL_AIGUES);
 - ✓ Au pied du talus de la digue, avant la jonction avec l'écoulement en provenance des haldes au niveau du bassin de décantation provisoires (AVAL_DIGUE);
 - ✓ Après la jonction avec l'Aigues Mortes récupérant les écoulements des haldes (AVAL HALDES);
 - ✓ Point dans le vallon nord dans lequel les eaux du bassin de régulation sont rejetées; (SORTIE_BASSIN);
- Des eaux souterraines et des sédiments à l'aide de prélèvements moyens mensuels :
 - ✓ À quelques mètres de la résurgence de la source du Bijournet (BIJOURNET).
- Des poussières à l'aide de prélèvements en continu sur une durée de 30 jours ± 6 jours :
 - ✓ Partie NORD : Hameau de Pallières Jauge OWEN témoin
 - ✓ Sur site : à l'entrée de la digue
 - ✓ Partie SUD : Ancien atelier de la mine Direction des vents dominants.

Ce suivi est fait depuis le 26 juin 2020 pour le compte d'UMICORE, maître d'ouvrage, par MINELIS.

Cette prestation SUIVI suit la norme NF X31-620-2 relative aux prestations concernant les sites et sols pollués – Exigences dans le domaine des prestations d'études, d'assistance et de contrôle. Elle inclue les prestations élémentaires :

- A220 : prélèvements, mesures, observations et /ou analyses sur les eaux superficielles et les sédiments ;
- A210: prélèvements, mesures, observations et /ou analyses sur les eaux souterraines;
- A270 : Interprétation des résultats des investigations.

Ce rapport rassemble les résultats du contrôle de la qualité des eaux de surface, des eaux souterraines et des sédiments réalisé le 26 août 2020.

Le suivi des poussières fait l'objet d'un rapport séparé.

1 Localisation du site à l'étude

Le site minier de la Croix-de-Pallières, objet de l'étude, est localisé sur les communes de Saint Félix de Pallières et de Thoiras localisées à 15 km à vol d'oiseau au sud-ouest de la commune d'Ales dans le Gard (30). La digue à résidus est installée sur des formations karstiques datées du permien supérieur (Sinémurien-Carixien) à l'hettangien (Lias). La zone géographique possède une géologie très variée, dont la nature est principalement calcaire, dolomitique et karstique.

La région est sujette aux épisodes dits « cévenol », qui se caractérisent par des évènements pluvieux violents qui habituellement se déroulent sur plusieurs heures voire plusieurs jours et donnent des hauteurs d'eau comprises entre 200 et 400 mm mais pouvant être bien plus élevée.

Le chantier se situe dans un environnement forestier classé en ZNIEFF de type II. Les environs de la digue à résidus sont caractérisés principalement par la présence de forêts et de haldes, correspondant à des stériles miniers, installés dans le fond de la vallée.

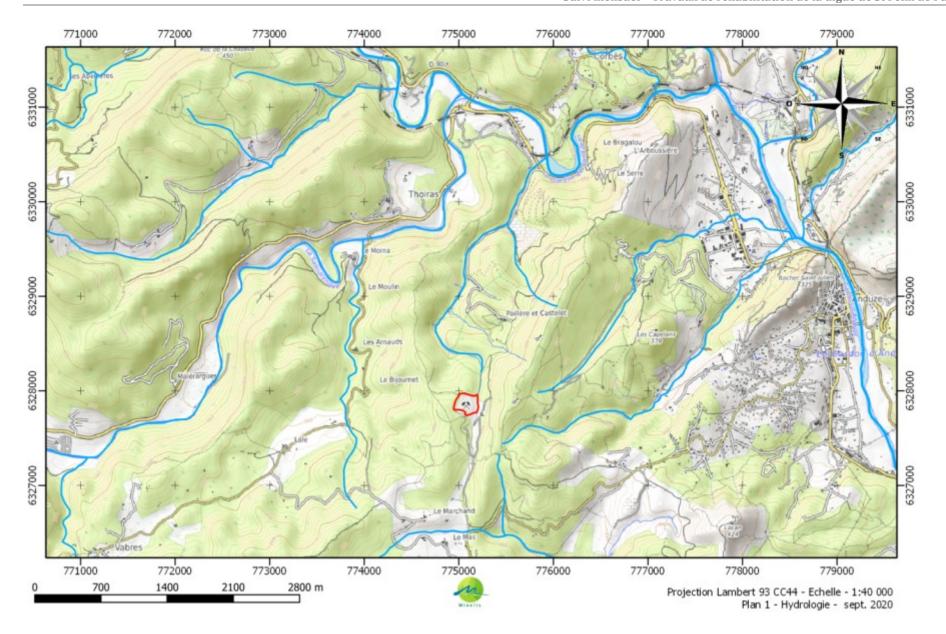


Figure 1 : Carte de situation au 1 :40 000 du site des anciennes mines de la Vieille Montagne de Saint Félix de Pallières dans son contexte hydrographique sur fond IGN

2 Milieu d'exposition et vecteurs de transfert

2.1 Schéma conceptuel

Le schéma conceptuel de la **Figure 2** résume les transferts possibles de la source de pollution dans les milieux investigués (eaux de surface et sédiments, eaux souterraines, air).

2.2 Sources

Dans le cadre des différentes études réalisées sur le site, les sources de pollution ont été identifiées :

- Présence de métaux sur brut dans la digue provenant d'anciens résidus miniers ;
- Présence de métaux sur brut sur des sites diffus à proximité de la zone d'études.

2.3 Milieux et transferts

Les principaux transferts de polluants au sein et à l'extérieur du site pourraient être les suivants :

- Ruissellement des eaux chargées vers les points bas ;
- Transport éolien: Retombées atmosphériques de polluants présents dans l'atmosphère.
- Lixiviation dans les sols, puis migration vers la nappe phréatique ;
- Transfert de polluants au sein de la nappe phréatique, puis migration vers les eaux de surface.

Les milieux investigués sont les eaux de surface, les sédiments, les eaux souterraines et les retombées de poussières.

2.4 Enjeux à protéger

Compte tenu de la nature des polluants, de la configuration du site et de l'environnement, les enjeux à protéger sont :

- Les ouvriers ;
- Les riverains ;
- Et les cours d'eau.

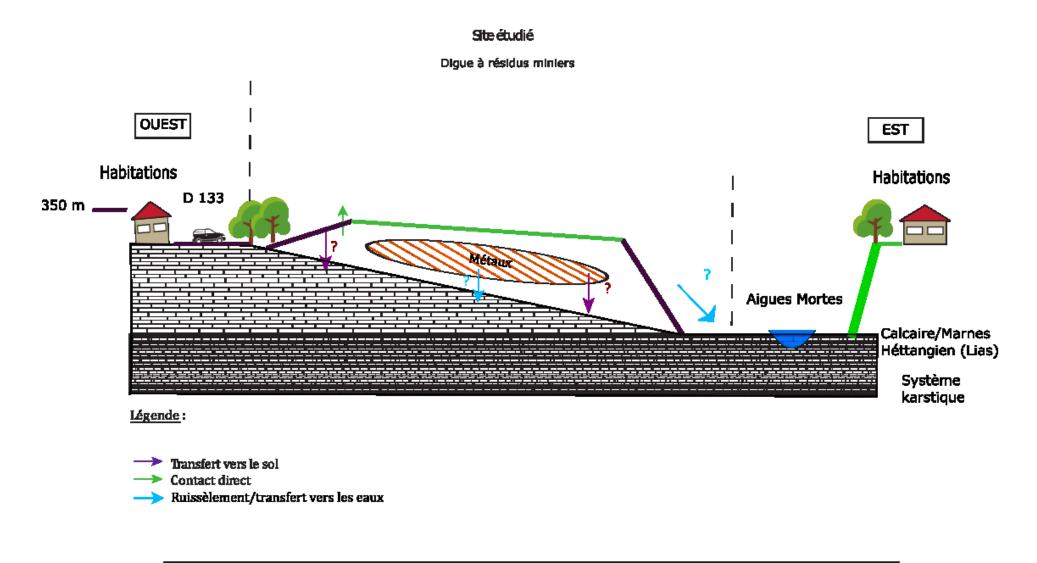


Figure 2 : Schéma conceptuel digue de Saint Félix de Pallières

3 Suivi des eaux et sédiments

Afin de suivre l'impact de la réhabilitation du site sur le milieu naturel, le réseau de surveillance des eaux de surface, des eaux souterraines et des sédiments a été mis en place en lien avec la DDTM et conformément à la prescription de l'arrêté préfectoral. Ce réseau est constitué de 5 points de mesures répartis en aval de la digue à résidus miniers.

Les eaux et sédiments sont contrôlés aux endroits suivants :

- AVAL-DIGUE : avant la jonction avec l'écoulement en provenance des haldes au niveau du bassin de décantation provisoire ;
- AVAL_HALDES: après la jonction avec l'Aigues Mortes récupérant les écoulements des haldes;
- AVAL_AIGUES : à 1,2 km à l'aval de la digue ;
- SORTIE_BASSIN: un point dans le vallon nord dans lequel les eaux du bassin de régulation sont rejetées;
- BIJOURNET : point de résurgence de la source du Bijournet (Ouest de la digue).

Il est à noter que, par le régime hydrique de la région, la présence d'eau dans les ruisseaux n'est pas toujours garantie. Ainsi il peut y avoir des variations sur le nombre d'échantillons réalisés en fonction des campagnes.

Les analyses portent sur l'antimoine (Sb), l'arsenic (As), le plomb (Pb), le cadmium (Cd), le chrome (Cr), le cuivre (Cu), le nickel (Ni), le zinc (Zn), le mercure (Hg), les cyanures totaux et aisément libérables et le Carbone Organique Total (COT). Les paramètres physicochimiques, pH et conductivité, sont mesurés in situ et en laboratoire.



Figure 3 : Localisation des points de prélèvements

3.1 Valeurs de référence

Conformément à l'arrêté préfectoral n°30-2020-06-24-002 et notamment à l'article 3.4, les valeurs de références sont définies en fonction :

- (1) Arrêté du 17 décembre 2008 établissant les critères d'évaluation et les modalités de détermination de l'état des eaux souterraines et des tendances significatives et durables de dégradation de l'état chimique des eaux souterraines modifié par l'arrêté du 23 juin 2016 ;
- (2) Guide INERIS DRC-17-164559-10404A version du 13 mars 2018 : **NQE-CMA des eaux de surface intérieures** définie par **l'arrêté du 25 janvier 2010 relatif** aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface pris en application des articles R. 212-10, R. 212-11 et R. 212-18 du code de l'environnement modifié par l'arrêté du 28 juin 2016 ;
- (3) Arrêté du 9 août 2006 modifié par l'arrêté du 30 juin 2020 relatif aux niveaux à prendre en compte lors d'une analyse de rejets dans les eaux de surface ou de sédiments marins, estuariens ou extraits de cours d'eau ou canaux relevant respectivement des rubriques 2.2.3.0, 4.1.3.0 et 3.2.1.0 de la nomenclature annexée à l'article R. 214-1 du code de l'environnement : Tableau IV pour la qualité des sédiments extraits de cours d'eau ou de canaux ;
- (4) Lorsque aucune valeur de référence n'est définie pour les paramètres analysés, les données obtenues pendant la campagne initiale d'avant travaux (26 juin 2020) serviront de références.

Les valeurs des échantillons non filtrés ne peuvent être comparées au référentiel NQE-CMA⁽²⁾ qui est défini sur les formes dissoutes, notamment pour les métaux. Les analyses réalisées sur brut serviront de valeurs de référence pour discuter des variations observées en fonction des campagnes de prélèvements. Ces valeurs serviront également à définir l'état initial avant travaux afin de mesurer les potentiels impacts du chantier sur l'environnement.

3.1.1 Valeurs de références pour les eaux

Voici le tableau des valeurs servant de références pour les eaux de surface (ESU) et les eaux souterraines (ESO) :

		ESU (2)	ESO (1)	
Paramètres	Unités	ESU	E30	
Arsenic (As)	μg/l	ND	10	
Cadmium (Cd)	μg/l	0,45	5	
Chrome (Cr)	μg/l	ND	ND	
Cuivre (Cu)	μg/l	ND	ND	
Nickel (Ni)	μg/l	34	ND	
Plomb (Pb)	μg/l	14	10	
Zinc (Zn)	μg/l	ND	ND	
Mercure (Hg)	μg/l	0,07	1	
Antimoine (Sb)	μg/l	ND	ND	
Fer (Fe)	mg/l	ND	ND	
сот	mg C/I	ND	ND	
Cyanures aisément libérables	μg/l	ND	ND	
Cyanures totaux	μg/l	ND	ND	
рН	Unités	ND	ND	

- (1) Arrêté du 17 décembre 2008 établissant les critères d'évaluation et les modalités de détermination de l'état des eaux souterraines et des tendances significatives et durables de dégradation de l'état chimique des eaux souterraines modifié par l'arrêté du 23 juin 2016;
- (2) Guide INERIS DRC-17-164559-10404A version du 13 mars 2018 : NQE-CMA des eaux de surface intérieures définie par l'arrêté du 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface pris en application des articles R. 212-10, R. 212-11 et R. 212-18 du code de l'environnement modifié par l'arrêté du 28 juin 2016;
- o ND : Non défini

La valeur de référence choisie est celle correspondant à une dureté d'eau faible [CaCO3] < 40 mg/l de façon conservatoire. L'analyse de la dureté de l'eau au droit du prélèvement dans l'Aigues-Mortes devra être réalisée pour déterminer au mieux le seuil de référence. Compte tenu de la nature calcaire du substratum si la dureté de l'eau passait en classe 5 ([CaCO3] > 200 mg/l) cela correspondrait à une valeur seuil en Cd plus importante (5 µg/l au lieu de 0,45 µg/l).

3.1.2 Valeurs de références pour les sédiments

Voici le tableau des valeurs servant de références pour les sédiments (SED) :

		SED (3)
Paramètres	Unités	323
Arsenic (As)	mg/kg M.S.	30
Cadmium (Cd)	mg/kg M.S.	2
Chrome (Cr)	mg/kg M.S.	150
Cuivre (Cu)	mg/kg M.S.	100
Nickel (Ni)	mg/kg M.S.	50
Plomb (Pb)	mg/kg M.S.	100
Zinc (Zn)	mg/kg M.S.	300
Mercure (Hg)	mg/kg M.S.	1
Antimoine (Sb)	mg/kg M.S.	ND
Fer (Fe)	mg/kg M.S.	ND
СОТ	mg/kg M.S.	ND
Cyanures aisément libérables	mg/kg M.S.	ND
Cyanures totaux	mg/kg M.S.	ND
рН	Unités	ND

3.2 Données pluviométriques

Les données pluviométriques pour le mois d'août 2020 (source : infoclimat.fr) pour la station de Thoiras située à environ 2km du chantier sont disponibles dans le graphique suivant :

Températures maxi, mini, précipitations

En août 2020 à Thoiras 10 Températures (°C) 14 16 28 10 12 18 20 22 24 26 30 Jour du mois Pluie sur 24h - Température maximale · Afficher les records de TN → Température minimale · Afficher les records de TX www.infoclimat.fr

Figure 4 : Relevé pluviométrique de la station de Thoiras (30) pour le mois d'août 2020.

On constate de très faibles précipitations survenues avant la campagne de prélèvement d'août 2020, pour un cumul de pluie sur le mois d'environ 15mm. Compte tenu des températures et de l'état déshydraté des sols, les eaux météoriques ont été rapidement absorbées et ainsi aucun ruissèlement n'a été observé.

3.3 Résultats et interprétation des prélèvements

3.3.1 Eaux de surface

Compte tenu du régime hydrique de la région, aucun prélèvement d'eau de surface n'a pu être réalisé lors de la campagne du 26 août 2020.

3.3.2 Eaux souterraines

Les prélèvements sur le point BIJOURNET sont réalisés à l'aide d'un bécher en plastique (PE). Une partie des échantillons sont filtrés à $0,45~\mu m$ pour l'analyse des métaux dissous. L'analyse sur brut est également effectuée.

Paramètres	Unités		(1)	Bijournet brute	Bijournet filtrée
Antimoine (Sb)	μg/l	0,2	ND	0,34	0,31
Arsenic (As)	μg/l	0,2	10	1,94	1,34
Cadmium (Cd)	μg/l	0,2	5,0	5,09	4,90
Chrome (Cr)	μg/l	0,5	ND	<0,50	<0,50
Cuivre (Cu)	μg/l	0,5	ND	<0,50	<0,50
Nickel (Ni)	μg/l	2,0	ND	7,80*	8,90*
Plomb (Pb)	μg/l	0,5	10	<0,50	<0,50
Zinc (Zn)	μg/l	5,0	ND	1560,00*	1810,00*
Mercure (Hg)	μg/l	0,2	1	<0,20	<0,20
Fer (Fe)	mg/l	1,0	ND	0,13	<0,001
СОТ	mg C/I	0,5	ND	4,8	
Cyanures aisément libérables	μg/l		ND	<10	
Cyanures totaux	μg/l		ND	<10	
рН	рН			8,1	
Conductivité	μS/cm			1640	

Tableau 1 : Résultats d'analyse des prélèvements d'eaux souterraines de la campagne du 26 août 2020

Aucune concentration pour les paramètres analysés ne dépasse les valeurs de références définies par (1) l'arrêté du 17 décembre 2008 modifié par l'arrêté du 23 juin 2016 lorsque celles-ci existent.

^{*)} Il est observé une teneur sur échantillon filtrée légèrement supérieure à celle sur brut pour les 2 paramètres Nickel et Zinc. Les ordres de grandeur sont identiques et on peut considérer que ces éléments sont intégralement sous forme dissoute.

3.3.3 Sédiments

Les prélèvements sur les points SED_AVAL_AIGUES, SED_AVAL_DIGUE, SED_AVAL_HALDES, SED_SORTIE_BASSIN et SED_BIJOUNET sont réalisées à l'aide d'une pelle à main ou à la main (gants en nitrile).

Daramàtras	Limitás	10	(2)			SED		
Paramètres	Unités	LQ	(3)	SORTIE_BASSIN	AVAL_DIGUE	AVAL_HALDES	AVAL_AIGUES	BIJOURNET
Antimoine (Sb)	mg/kg M.S.	1,0	ND	2,09	100	109	64,4	7,61
Arsenic (As)	mg/kg M.S.	1,0	30	17,8	993	836	538	310
Cadmium (Cd)	mg/kg M.S.	0,4	2	0,75	56,9	36,7	33,2	18,7
Chrome (Cr)	mg/kg M.S.	5,0	150	15,7	5,89	17,4	12,9	27,5
Cuivre (Cu)	mg/kg M.S.	5,0	100	17,3	155	234	165	28,8
Fer (Fe)	mg/kg M.S.	5,0	ND	16000	117000	111000	74200	61700
Nickel (Ni)	mg/kg M.S.	1,0	50	21,5	10,1	10,2	13,7	50,1
Plomb (Pb)	mg/kg M.S.	5,0	100	34,2	15800	7350	4750	583
Zinc (Zn)	mg/kg M.S.	5,0	300	136	12100	5900	7130	9480
Mercure (Hg)	mg/kg M.S.	0,1	1	<0.10	4,65	3,48	3,56	0,43
COT	mg/kg M.S.	1000,0	ND	13900	21100	29200	37600	25000
Cyanures								
aisément	mg/kg M.S.	0,5	ND	<0,5	<0,5	<0,5	<0,5	<0,5
libérables								
Cyanures totaux	mg/kg M.S.	0,5	ND	<0,5	<0,5	<0,5	<0,5	<0,5
Conductivité	μS/cm		ND	224	379	485	205	515
рН	Unité pH		ND	8,4	7,8	8	8,4	8,3

Tableau 2 : Résultats d'analyses des prélèvements de sédiments de la campagne du 26 août 2020

Les concentrations en As, Cd, Zn et Pb dépassent les valeurs de référence (respectivement 30, 2, 300 et 100 mg/kg M.S.) définies par (3) l'arrêté du 9 août 2006 modifié par l'arrêté du 30 juin 2020 pour l'ensemble des échantillons à l'exception de l'échantillon SORTIE_BASSIN.

Les concentrations en Hg et Cu dépassent les valeurs de références (respectivement 1 et 100 mg/kg M.S.) (3) pour les prélèvements AVAL_AIGUES, AVAL_HALDES et AVAL_DIGUE.

La concentration en Ni pour l'échantillon BIJOURNET (50,1 mg/kg M.S.) est supérieure à la valeur de référence (3) qui est de 50 mg/kg M.S.

3.3.4 Comparaison du ratio Cd/Zn pour la matrice sédiment

Le rapport des teneurs entre deux métaux lourds, permet, dans une certaine mesure, de relier des échantillons à une potentielle source de pollution. Le tableau suivant donne les rapports des teneurs en cadmium sur les teneurs en zinc pour les 5 prélèvements et le résidu minier présent au droit de la digue.

	SORTIE_BASSIN	AVAL_DIGUE	AVAL_HALDES	AVAL_AIGUES	BIJOURNET	DIGUE
Cadmium/ Zinc en %	0,551	0,470	0,622	0,466	0,197	0,454

Tableau 3 : Ratio des teneurs en Cadmium sur les teneurs en Zinc pour la matrice sédiment.

On remarque que les ratios Cd/Zn pour les échantillons AVAL_AIGUES, AVAL_DIGUE, AVAL_HALDES et SORTIE_BASSIN sont quasi similaires, environ 0,50 %. On remarque le ratio Cd/Zn pour l'échantillon du BIJOURNET (0,197%) se distingue toujours fortement des 4 autres points de prélèvement.

De manière générale, ces différences mettent en évidence 2 signatures distinctes d'échantillons :

- Ceux prélevés en aval hydraulique de la digue, dont les ratios Cd/Zn sont similaires entre eux.
- Les sédiments de la source du Bijournet, dont l'impact potentiel est lié à des circulations souterraines non maîtrisées qui possèdent un ratio Cd/Zn qui diffère des autres prélèvements.

Ce point en cohérent par rapport aux campagnes antérieures.

3.4 Comparaisons avec les campagnes précédentes

3.4.1 Eaux souterraines

Dans le cadre du suivi environnemental du chantier de réhabilitation de la digue à résidus, des campagnes de prélèvements des eaux sont effectuées chaque mois. Les résultats de ces campagnes sont comparés entre eux afin de vérifier l'impact potentiel des travaux sur l'environnement.

Le graphique qui suit présente les variations des teneurs en fonction des campagnes de juillet et d'août 2020.

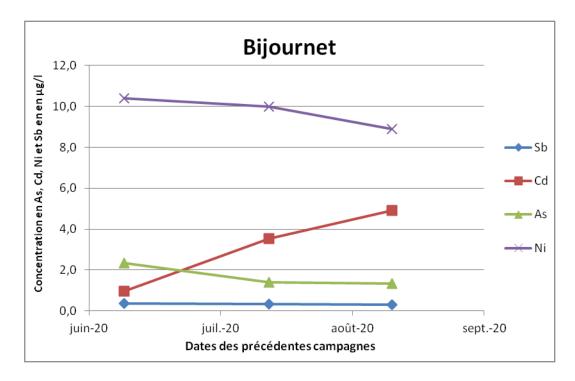


Figure 5 : Comparaison des concentrations en métaux (sur dissous) en fonction des campagnes au droit de la source du Bijournet

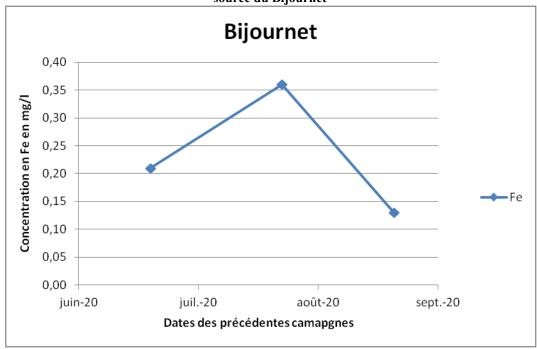


Figure 6 : Comparaison des concentrations en Fer (sur eau brute) en fonction des campagnes au droit de la source du Bijournet

De manière générale les concentrations en métaux dans la source du Bijournet sont similaires ou en baisse entre les campagnes de juillet et août 2020, à l'exception du cadmium qui est en augmentation.

3.4.2 Eaux de surface

Dans le cadre du suivi environnemental du chantier de réhabilitation de la digue à résidus, des campagnes de prélèvements des eaux de surface sont effectuées chaque mois, quand la situation hydrique le permet. Les résultats de ces campagnes sont comparés entre eux afin de vérifier l'impact potentiel des travaux sur l'environnement.

Compte tenu du régime hydrique de la région, aucun prélèvement dans l'Aigues Mortes n'a été réalisé lors de la campagne du 26 août 2020.

3.4.3 Sédiments

Dans le cadre du suivi environnemental du chantier de réhabilitation de la digue à résidus, des campagnes de prélèvements de sédiments sont effectuées chaque mois. Les résultats de ces campagnes sont comparés entre eux afin de vérifier l'impact potentiel des travaux sur l'environnement.

Le tableau qui suit compare les concentrations en métaux de la matrice sédiment des campagnes de juillet et d'août 2020 :

Paramètres	Unités	LQ	26/06/2020	29/07/2020	26/08/2020	Evolution	26/06/2020	29/07/2020	26/08/2020	Evolution	26/06/2020	29/07/2020	26/08/2020	Evolution
raiameties	Offices	LQ		SORTIE_	BASSIN			AVAL_DIGUE			AVAL_HALDES			
Antimoine (Sb)	mg/kg M.S.	1,0	3,65	2,76	2,09	-24,3%	80,4	98,6	100,0	1,4%	206,00	77,40	109,00	40,8%
Arsenic (As)	mg/kg M.S.	1,0	43,40	53,70	17,80	-66,9%	825,0	1060,0	993,0	-6,3%	720,00	593,00	836,00	41,0%
Cadmium (Cd)	mg/kg M.S.	0,4	1,95	2,75	0,75	-72,7%	54,5	57,8	56,9	-1,6%	35,90	29,80	36,70	23,2%
Chrome (Cr)	mg/kg M.S.	5,0	13,20	12,20	15,70	28,7%	7,7	<5,00	<5,00	0,0%	15,40	11,20	17,40	55,4%
Cuivre (Cu)	mg/kg M.S.	5,0	8,80	9,34	17,30	85,2%	273,0	226,0	155,0	-31,4%	493,00	240,00	234,00	-2,5%
Fer (Fe)	mg/kg M.S.	5,0	17700,00	16800,00	16000,00	-4,8%	138000,0	132000,0	117000,0	-11,4%	111000,00	84500,00	111000,00	31,4%
Nickel (Ni)	mg/kg M.S.	1,0	14,20	12,30	21,50	74,8%	13,5	10,2	10,1	-1,0%	16,10	10,10	10,20	1,0%
Plomb (Pb)	mg/kg M.S.	5,0	130,00	200,00	34,20	-82,9%	11300,0	12600,0	15800,0	25,4%	12300,00	8640,00	7350,00	-14,9%
Zinc (Zn)	mg/kg M.S.	5,0	419,00	507,00	136,00	-73,2%	11600,0	12200,0	12100,0	-0,8%	8210,00	6930,00	5900,00	-14,9%
Mercure (Hg)	mg/kg M.S.	0,1	<0,1	0,13	<0,1	-23,1%	2,5	3,5	4,7	31,7%	4,73	3,10	3,48	12,3%
СОТ	mg/kg M.S.	1000,0	8770,00	5540,00	13900,00	-36,8%	32200,0	4260,0	21100,0	395,3%	16800,00	48500,00	29200,00	-39,8%
Paramètres	Unités	LQ	26/06/2020	29/07/2020	26/08/2020	Evolution	26/06/2020	29/07/2020	26/08/2020	Evolution				
Tarametres	Offices	LQ		AVAL_/	AIGUES			BIJOL	JRNET					
Antimoine (Sb)	mg/kg M.S.	1,0	85,00	139,00	64,40	-53,7%	15,3	3,7	7,6	103,5%				
Arsenic (As)	mg/kg M.S.													
Cadmium		1,0	699,00	967,00	538,00	-44,4%	542,0	525,0	310,0	-41,0%				
(Cd)	mg/kg M.S.	0,4	699,00 30,40	967,00 39,00	538,00 33,20	-44,4% -14,9%	542,0 18,7	525,0 23,9	310,0 18,7	-41,0% -21,8%				
	mg/kg M.S. mg/kg M.S.				-				·	•				
(Cd)		0,4	30,40	39,00	33,20	-14,9%	18,7	23,9	18,7	-21,8%				
(Cd) Chrome (Cr)	mg/kg M.S.	0,4 5,0	30,40 12,90	39,00 19,30	33,20 12,90	-14,9% -33,2%	18,7 27,6	23,9 17,5	18,7	-21,8% 57,1 %				
(Cd) Chrome (Cr) Cuivre (Cu)	mg/kg M.S. mg/kg M.S.	0,4 5,0 5,0	30,40 12,90 181,00	39,00 19,30 199,00	33,20 12,90 165,00	-14,9% -33,2% -17,1%	18,7 27,6 44,5	23,9 17,5 23,6	18,7 27,5 28,8	-21,8% 57,1% 22,0%				
(Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe)	mg/kg M.S. mg/kg M.S. mg/kg M.S.	0,4 5,0 5,0 5,0	30,40 12,90 181,00 91800,00	39,00 19,30 199,00 116000,00	33,20 12,90 165,00 74200,00	-14,9% -33,2% -17,1% -36,0%	18,7 27,6 44,5 103000,0	23,9 17,5 23,6 94600,0	18,7 27,5 28,8 61700,0	-21,8% 57,1% 22,0% -34,8%				
(Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni)	mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S.	0,4 5,0 5,0 5,0 1,0	30,40 12,90 181,00 91800,00 15,90	39,00 19,30 199,00 116000,00 18,10	33,20 12,90 165,00 74200,00 13,70	-14,9% -33,2% -17,1% -36,0% -24,3%	18,7 27,6 44,5 103000,0 82,3	23,9 17,5 23,6 94600,0 142,0	18,7 27,5 28,8 61700,0 50,1	-21,8% 57,1% 22,0% -34,8% -64,7%				
(Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb)	mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S.	0,4 5,0 5,0 5,0 1,0 5,0	30,40 12,90 181,00 91800,00 15,90 4510,00	39,00 19,30 199,00 116000,00 18,10 9360,00	33,20 12,90 165,00 74200,00 13,70 4750,00	-14,9% -33,2% -17,1% -36,0% -24,3% -49,3%	18,7 27,6 44,5 103000,0 82,3 479,0	23,9 17,5 23,6 94600,0 142,0 430,0	18,7 27,5 28,8 61700,0 50,1 583,0	-21,8% 57,1% 22,0% -34,8% -64,7% 35,6%				
(Cd) Chrome (Cr) Cuivre (Cu) Fer (Fe) Nickel (Ni) Plomb (Pb) Zinc (Zn) Mercure	mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S.	0,4 5,0 5,0 5,0 1,0 5,0 5,0	30,40 12,90 181,00 91800,00 15,90 4510,00 7230,00	39,00 19,30 199,00 116000,00 18,10 9360,00 7030,00	33,20 12,90 165,00 74200,00 13,70 4750,00 7130,00	-14,9% -33,2% -17,1% -36,0% -24,3% -49,3% 1,4%	18,7 27,6 44,5 103000,0 82,3 479,0 11000,0	23,9 17,5 23,6 94600,0 142,0 430,0 29600,0	18,7 27,5 28,8 61700,0 50,1 583,0 9480,0	-21,8% 57,1% 22,0% -34,8% -64,7% 35,6% -68,0%				

Tableau 4 : Tableau récapitulatif de l'évolution des concentrations en métaux et COT entre les campagnes de juin à août 2020.

Concernant l'évolution des concentrations en métaux lourds analysés dans la matrice sédiment entre juillet et août 2020, il est à noter principalement que :

- Au droit d'AVAL_AIGUES, les concentrations en métaux lourds analysés ont tendance à diminuer;
- Au droit d'AVAL_HALDES, les concentrations en métaux lourds analysés ont tendance à augmenter ;
- Au droit de la source du Bijournet et d'AVAL_DIGUE, les concentrations en métaux lourds analysés sont stables, à l'exception des concentrations en Plomb qui ont augmenté;
- De manière générale, les concentrations en métaux lourds analysés au droit de SORTIE_BASSIN sont stables au cours des campagnes.

Compte tenu de la très faible pluviométrie observée (15 mm cumulé sur le mois d'août), ces évolutions ne sont vraisemblablement pas liées à d'éventuels rejets associés aux travaux mais plutôt liés à la variabilité de la répartition spatiale des sédiments au droit des zones prélevées. La méthodologie de prélèvement des sédiments consiste à réaliser 1 échantillon moyen réparti dans la largeur du cours d'eau en un minimum de 5 points. La fraction fine des sédiments est principalement recherchée et la présence de sédiments est parfois limitée. Malgré cette méthodologie d'échantillonnage, la répartition spatiale des sédiments peut entraîner une variabilité non négligeable sur les résultats obtenus. Il conviendra de suivre l'évolution des paramètres dans les campagnes suivantes.

4 Préconisation

Afin de limiter les impacts du chantier sur l'environnement, il est préconisé de bien veiller au respect des prescriptions de l'arrêté préfectoral n°30-2020-06-24-002.

5 CONCLUSION

Eaux de surface

Compte tenu du régime hydrique de la région, aucun prélèvement d'eau de surface n'a pu être réalisé lors de la campagne du 26 août 2020.

Eaux souterraines

Les résultats de la campagne du 26 août 2020 ne dépassent pas les valeurs seuils retenues au niveau national. Ainsi, d'après les normes de qualité environnementale les eaux de la source du Bijournet sont classées comme en « Bon état chimique » pour les paramètres analysés.

L'évolution des concentrations en métaux lourds analysés au droit de la source du Bijournet semblent être stable au cours des différentes campagnes de prélèvement, a l'exception des concentrations en cadmium qui ont augmenté. L'évolution de ce paramètre est à suivre au cours des prochaines campagnes.

<u>Sédiments</u>

Les résultats de la campagne d'août 2020 montrent un impact notamment en métaux lourd sur les sédiments analysés. Les paramètres qui dépassent les valeurs de références sont l'Arsenic, le Cuivre, le Plomb, le Zinc et le Mercure. Le point de prélèvements SORTIE_BASSIN est moins impacté par les métaux lourds que les 4 autres, effectivement aucune teneur ne dépasse les valeurs de référence définies par (3) l'arrêté du 9 août 2006 modifié par l'arrêté du 30 juin 2020.

Concernant l'évolution des concentrations en métaux lourds analysés dans la matrice sédiment entre juillet et août 2020, il est à noter principalement que :

- Au droit d'AVAL_AIGUES, les concentrations en métaux lourds ont tendance à diminuer;
- Au droit d'AVAL_HALDES, les concentrations en métaux lourds ont tendance à augmenter;
- Au droit de la source du Bijournet et d'AVAL_DIGUE, les concentrations en métaux lourds sont stables, à l'exception des concentrations en Plomb qui ont augmenté ;
- De manière générale, les concentrations en métaux lourd au droit de SORTIE_BASSIN sont stables au cours des campagnes.

Ces différences proviennent vraisemblablement de l'hétérogénéité de la matrice sédiment. En effet la variabilité spatiale des sédiments peut entraîner des variations dans les concentrations pour les éléments analysés. Par ailleurs, lors du mois d'août de très faibles précipitations ont été enregistrées sur le chantier et aux alentours, limitant ainsi de potentiels transferts de polluants.

ANNEXES

ANNEXE 1	: Normes et limites analytiques sur matrice eau	35
ANNEXE 2	: Normes et limites analytiques sur matrice sédiment	37
ANNEXE 3	: Résultats d'analyses	39
ANNEXE 4	: Fiches de prélèvements ESU	40
ANNEXE 5	: Fiches de prélèvements ESO	41
ANNEXE 6	: Fiches de prélèvements SED	42
ANNEXE 7	: Fiche flaconnage	43

ANNEXE 1 : Normes et limites analytiques sur matrice eau

ANALYSES	NORMES	LQI	Incertitude à la LQ
Pa	ramètres physico-chimique	es généraux	
Conductivité	NF EN 27888 ISO 7888	1 μS/cm	-
рН	NF T 90-008	-	-
	Paramètres métaux et as	similés	
Antimoine (Sb)	NF EN ISO 17294-2	0,2 μg/L	30 %
Arsenic (As)	NF EN ISO 17294-2	0,2 μg/L	20 %
Cadmium (Cd)	NF EN ISO 17294-2	0,2 μg/L	20 %
Chrome (Cr)	NF EN ISO 17294-2	0,5 μg/L	30 %
Cuivre (Cu)	NF EN ISO 17294-2	0,5 μg/L	20 %
Nickel (Ni)	NF EN ISO 17294-2	2 μg/L	25 %
Plomb (Pb)	NF EN ISO 17294-2	0,5 μg/L	25 %
Zinc (Zn)	NF EN ISO 17294-2	5 μg/L	-
Fer (Fe)	NF EN ISO 17294-2	0,001 mg/L	50 %
Mercure (Hg)	NF EN ISO 17852	0,2 μg/L	30 %
	Autres		
Carbone organique total	NF EN 1484	0,5 mC/L	50 %
Cyanures aisément libérables	NF EN ISO 14403-2	10 μg/L	40 %
Cyanures totaux	NF EN ISO 14403	10 μg/L	40 %

Tableau 5 : Normes et limites analytiques

ANNEXE 2 : Normes et limites analytiques sur matrice sédiment

ANALYSES	NORMES L		Incertitude à la LQ					
Pa	ramètres physico-chimique	es généraux						
рН	Ad. NF ISO 10390	-	-					
Paramètres métaux et assimilés								
Antimoine (Sb)	NF EN ISO 11885	1 mg/kg M.S.	35 %					
Arsenic (As)	NF EN ISO 11885	1 mg/kg M.S.	40 %					
Cadmium (Cd)	NF EN ISO 11885	0,4 mg/kg M.S.	40 %					
Chrome (Cr)	NF EN ISO 11885	5 mg/kg M.S.	45 %					
Cuivre (Cu)	NF EN ISO 11885	5 mg/kg M.S.	50 %					
Fer (Fe)	NF EN ISO 11885	5 mg/kg M.S.	25 %					
Nickel (Ni)	NF EN ISO 11885	1 mg/kg M.S.	50 %					
Plomb (Pb)	NF EN ISO 11885	5 mg/kg M.S.	30 %					
Zinc (Zn)	NF EN ISO 11885	5 mg/kg M.S.	25 %					
Mercure (Hg)	NF EN 13346	0,1 mg/kg M.S.	20 %					
	Autres							
Carbone organique total	NF EN 15936	1000 mC/L	40 %					
Cyanures aisément libérables	NF EN ISO 17380	0,5 mg/kg M.S.	40 %					
Cyanures totaux	NF EN ISO 17380	0,5 mg/kg M.S.	40 %					

ANNEXE 3 : Résultats d'analyses

MINELIS
Monsieur Harold LEFEVRE
8 rue paulin talabot
31000 TOULOUSE

RAPPORT D'ANALYSE

Dossier N°: 20E144448 Version du: 26/09/2020

N° de rapport d'analyse : AR-20-LK-165371-02 Date de réception technique : 28/08/2020

Première date de réception physique : 28/08/2020

Annule et remplace la version AR-20-LK-165371-01.

Référence Dossier : N° Projet : UMISFX20B

Nom Projet : UMISFX Nom Commande : UMISFX Référence Commande :

Coordinateur de Projets Clients: Marion Medina / MarionMedina@eurofins.com / +33 64974 5158

N° Ech	Matrice		Référence échantillon
001	Sédiments	(SED)	Sortie bassin
002	Sédiments	(SED)	aval haldes
003	Sédiments	(SED)	aval digue
004	Sédiments	(SED)	aval aigue
005	Sédiments	(SED)	bijournet
006	Eau souterraine	(ESO)	bijounet filtré
007	Eau souterraine	(ESO)	bijournet eau

RAPPORT D'ANALYSE

Dossier N°: 20E144448

Version du : 26/09/2020

N° de rapport d'analyse : AR-20-LK-165371-02

Date de réception technique : 28/08/2020

Première date de réception physique : 28/08/2020

Annule et remplace la version AR-20-LK-165371-01.

Référence Dossier : N° Projet : UMISFX20B

Nom Projet: UMISFX Nom Commande: UMISFX Référence Commande :

N° Echantillon			001		002		003		004		005	006
Référence client :		_	Sortie passin	av	al haldes	a	val digue		aval aigue	b	ijournet	bijounet filtré
Matrice :			SED		SED		SED		SED		SED	ESO
Date de prélèvement :		26/	08/2020	26	6/08/2020	26	6/08/2020	2	26/08/2020	26	3/08/2020	26/08/2020
Date de début d'analyse :			/08/2020	28	8/08/2020	28	8/08/2020	:	28/08/2020		3/08/2020	28/08/2020
Température de l'air de l'enceinte :		•	12.4°C		12.4°C		12.4°C		12.4°C		12.4°C	12.4°C
	Р	rép	aration	Pł	nysico-C	hir	mique					
XXS06 : Séchage à 40°C		*	-	*	-	*	-	*	-	*	-	
LSA07 : Matière sèche	% P.B.	*	98.9	*	99.1	*	98.6	*	82.5	*	71.9	
XXS07 : Refus Pondéral à 2 mm	% P.B.	*	17.3	*	23.6	*	27.2	*	21.1	*	32.4	
			Analys	es	immédia	ate	s					
LSL4H : pH H2O pH extrait à l'eau			8.4		8.0		7.8	Г	8.4		8.3	
Température de mesure du pH	°C		22		22		22		21		22	
LSL42 : Conductivité sur brut												
Conductivité corrigée automatiquement à 25°C	μS/cm		224		485		379		205		515	
Température de mesure de la conductivité	°C		21.8		21.7		21.6		21.3		21.7	
			Indice	s d	le pollut	ion						
LS910 : Cyanures aisément libérables (= Cyanures libres)	mg/kg M.S.		<0.5		<0.5		<2.5	Г	<0.5		<0.5	
LS917 : Cyanures totaux	mg/kg M.S.		<0.5		<0.5		<0.5		<0.5		<0.5	
LSSKM : Carbone organique total (COT combustion sèche (Sédiments)												
Carbone Organique Total par Combustion	mg/kg M.S.	*	13900	*	29200	*	21100	*	37600	*	25000	
Coefficient de variation (CV)	%	*	21.3	*	16.3	*	3.55					
				Mé	taux							
XXS01 : Minéralisation eau régale - Bloc chauffant		*	-	*	-	*	-	*	-	*	-	
LS863 : Antimoine (Sb)	mg/kg M.S.		2.09		109		100		64.4		7.61	

RAPPORT D'ANALYSE

Dossier N°: 20E144448

N° de rapport d'analyse : AR-20-LK-165371-02

Version du : 26/09/2020

Date de réception technique : 28/08/2020

Première date de réception physique : 28/08/2020

Annule et remplace la version AR-20-LK-165371-01.

Référence Dossier : N° Projet : UMISFX20B

Nom Projet : UMISFX Nom Commande : UMISFX Référence Commande :

N° Echantillon			001		002		003		004		005		006
Référence client :			Sortie	а	val haldes	6	aval digue		aval aigue	b	ijournet	b	ijounet
Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte :			bassin SED 6/08/2020 8/08/2020 12.4°C		SED 26/08/2020 28/08/2020 12.4°C		SED 26/08/2020 28/08/2020 12.4°C		SED 26/08/2020 28/08/2020 12.4°C	28	SED 5/08/2020 8/08/2020 12.4°C	28	filtré ESO :/08/2020 8/08/2020 12.4°C
				M	étaux								
LS865 : Arsenic (As)	mg/kg M.S.	*	17.8	*	836	*	993	*	538	*	310		
LS870 : Cadmium (Cd)	mg/kg M.S.	*	0.75	*	36.7	*	56.9	*	33.2	*	18.7		
LS872 : Chrome (Cr)	mg/kg M.S.	*	15.7	*	17.4	*	5.89	*	12.9	*	27.5		
LS874 : Cuivre (Cu)	mg/kg M.S.	*	17.3	*	234	*	155	*	165	*	28.8		
LS876 : Fer (Fe)	mg/kg M.S.	*	16000	*	111000	*	117000	*	74200	*	61700		
LSFDA: Fer (Fe)	mg/l											*	<u><0.001</u>
LS881 : Nickel (Ni)	mg/kg M.S.	*	21.5	*	10.2	*	10.1	*	13.7	*	50.1		
LS883 : Plomb (Pb)	mg/kg M.S.	*	34.2	*	7350	*	15800	*	4750	*	583		
LS894 : Zinc (Zn)	mg/kg M.S.	*	136	*	5900	*	12100	*	7130	*	9480		
LSA09 : Mercure (Hg)	mg/kg M.S.	*	<0.10	*	3.48	*	4.65	*	3.56	*	0.43		
LS122 : Arsenic (As)	mg/l											*	<0.005
LS127 : Cadmium (Cd)	mg/l											*	<0.005
LS129 : Chrome (Cr)	mg/l											*	<0.005
LS105 : Cuivre (Cu)	mg/l											*	<0.01
LS109 : Fer (Fe)	mg/l											*	<0.01
LSKPN : Mercure	μg/l											*	<0.10
LS115 : Nickel (Ni)	mg/l											*	0.009
LS137 : Plomb (Pb)	mg/l											*	<0.005
LS111 : Zinc (Zn)	mg/l											*	1.75
LS151 : Antimoine (Sb)	μg/l											*	0.31

ACCREDITATION

Nº 1- 1488

Portée disponible sur

www.cofrac.fr

RAPPORT D'ANALYSE

Dossier N°: 20E144448

Version du : 26/09/2020

N° de rapport d'analyse : AR-20-LK-165371-02

Date de réception technique : 28/08/2020

Première date de réception physique : 28/08/2020

Annule et remplace la version AR-20-LK-165371-01.

Référence Dossier : N° Projet : UMISFX20B

Nom Projet : UMISFX Nom Commande : UMISFX Référence Commande :

N° Echantillon		001	002	003	004	005	006
Référence client :		Sortie bassin	aval haldes	aval digue	aval aigue	bijournet	bijounet filtré
Matrice:		SED	SED	SED	SED	SED	ESO
Date de prélèvement :		26/08/2020	26/08/2020	26/08/2020	26/08/2020	26/08/2020	26/08/2020
Date de début d'analyse :		28/08/2020	28/08/2020	28/08/2020	28/08/2020	28/08/2020	28/08/2020
Température de l'air de l'enceinte :		12.4°C	12.4°C	12.4°C	12.4°C	12.4°C	12.4°C
			Métaux				
LS153 : Arsenic (As)	μg/l						* <u>1.34</u>
LS158 : Cadmium (Cd)	μg/l						* <u>4.90</u>
DN223 : Chrome (Cr)	μg/l						* <u><0.50</u>
LS162 : Cuivre (Cu)	μg/l						* <u><0.50</u>
LS116 : Nickel (Ni)	μg/l						* <u>8.9</u>
LS184 : Plomb (Pb)	μg/l						* <u><0.50</u>
LS112 : Zinc (Zn)	μg/l						<u>1810</u>
DN225 : Mercure (Hg)	μg/l						* <0.20

RAPPORT D'ANALYSE

Dossier N°: 20E144448

N° de rapport d'analyse : AR-20-LK-165371-02

Annule et remplace la version AR-20-LK-165371-01.

Référence Dossier : N° Projet : UMISFX20B

Nom Projet: UMISFX Nom Commande: UMISFX Référence Commande :

Version du : 26/09/2020

Date de réception technique : 28/08/2020

Première date de réception physique : 28/08/2020

N° Echantillon	007
Référence client :	bijournet
	eau
Matrice:	ESO
Date de prélèvement :	26/08/2020
Date de début d'analyse :	28/08/2020
Température de l'air de l'enceinte :	12.4°C
	Analya

Date de prélèvement : Date de début d'analyse :		28	/08/2020 8/08/2020				
Température de l'air de l'enceinte :			12.4°C				
			Analys	es immédia	ates		
LS001 : Mesure du pH pH			# 8.1				
Température de mesure du pH	°C		20.6				
LSK98 : Conductivité à 25°C Conductivité corrigée automatiquement à 25°C	μS/cm		# 1640				
Température de mesure de la conductivité	°C		20.5				
			Indices	s de polluti	ion		
LS045 : Carbone Organique Total (COT)	mg C/I	*	4.8				
LS064 : Cyanures aisément libérables	μg/l	*	<10				
DN226 : Cyanures totaux	μg/l	*	<10				
				Métaux			
LSFDA: Fer (Fe)	mg/l	*	<u>0.13</u>				
LS122 : Arsenic (As)	mg/l	*	<0.005				
LS127 : Cadmium (Cd)	mg/l	*	<0.005				
LS129 : Chrome (Cr)	mg/l	*	<0.005				
LS105 : Cuivre (Cu)	mg/l	*	<0.01				
LS109 : Fer (Fe)	mg/l	*	0.13				
LSKPN : Mercure	μg/l	*	<0.10				
LS115 : Nickel (Ni)	mg/l	*	0.009				

ACCREDITATION

Nº 1- 1488

Portée disponible sur

www.cofrac.fr

RAPPORT D'ANALYSE

Métaux

Dossier N°: 20E144448

Version du : 26/09/2020

N° de rapport d'analyse : AR-20-LK-165371-02

Date de réception technique : 28/08/2020

Première date de réception physique : 28/08/2020

Annule et remplace la version AR-20-LK-165371-01.

Référence Dossier : N° Projet : UMISFX20B

Nom Projet : UMISFX Nom Commande : UMISFX Référence Commande :

N° Echantillon	007
Référence client :	bijournet
	eau
Matrice:	ESO
Date de prélèvement :	26/08/2020
Date de début d'analyse :	28/08/2020
Température de l'air de l'enceinte :	12.4°C

LS137 : Plomb (Pb)	mg/l	*	<0.005	
LS111 : Zinc (Zn)	mg/l	*	1.75	

LS151 : **Antimoine (Sb)** $\mu g/l$ * 0.34 LS153 : **Arsenic (As)** $\mu g/l$ * **1.94**

DN225 : **Mercure (Hg)** μg/l * <0.20

D : détecté / ND : non détecté z2 ou (2) : zone de contrôle des supports

Observations	N° Ech	Réf client
La conformité relative à la température relevée pendant le transport des échantillons n'est pas remplie.	(006) (007)	bijounet filtré / bijournet eau /
Les délais de mise en analyse sont supérieurs à ceux indiqués dans notre dernière étude de stabilité ou aux délais normatifs pour les paramètres identifiés par '#' et donnent lieu à des réserves sur les résultats, avec retrait de l'accréditation. L'échantillon a néanmoins été conservé dans les meilleures conditions de stockage.	(007)	bijournet eau
Version modifiée suite à une demande de complément(s) d'analyse(s)	(006) (007)	bijounet filtré / bijournet eau /

RAPPORT D'ANALYSE

Dossier N°: 20E144448

N° de rapport d'analyse : AR-20-LK-165371-02

Annule et remplace la version AR-20-LK-165371-01.

Référence Dossier : N° Projet : UMISFX20B

Nom Projet : UMISFX Nom Commande : UMISFX Référence Commande : Version du : 26/09/2020

Date de réception technique : 28/08/2020

Première date de réception physique : 28/08/2020

Stéphanie André

Responsable Service Clients

La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 10 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Les résultats et conclusions éventuelles s'appliquent à l'échantillon tel qu'i a été reçu. Les données transmises par le client pouvant affecter la validité des résultats, ne sauraient engager la responsabilité du laboratoire.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Lors de l'émission d'une nouvelle version de rapport, toute modification est identifiée par une mise en forme gras, italique et souligné.

L'information relative au seuil de détection d'un paramètre n'est pas couverte par l'accréditation Cofrac.

Les résultats précédés du signe < correspondent aux limites de quantification, elles sont la responsabilité du laboratoire et fonction de la matrice.

Tous les éléments de traçabilité et incertitude (déterminée avec k = 2) sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé par le ministre chargé de l'environnement - se reporter à la liste des laboratoires sur le site internet de gestion des agréments du ministère chargé de l'environnement : http://www.labeau.ecologie.gouv.fr

Laboratoire agréé pour la réalisation des analyses des paramètres du contrôle sanitaire des eaux – portée détaillée de l'agrément disponible sur demande.

Laboratoire agréé par le ministre chargé des installations classées conformément à l'arrêté du 11 Mars 2010. Mention des types d'analyses pour lesquels l'agrément a été délivré sur : www.eurofins.fr ou disponible sur demande.

Annexe technique

Dossier N° : 20E144448N° de rapport d'analyse :AR-20-LK-165371-02

Emetteur : Monsieur Harold LEFEVRE Commande EOL : 006-10514-631026

Nom projet : Référence commande :

Eau souterraine

Code	Analyse	Principe et référence de la	LQI	Unité	Prestation réalisée sur le
		méthode			site de :
DN223	Chrome (Cr)	ICP/MS - NF EN ISO 17294-2	0.5	μg/l	Eurofins Analyse pour l'Environnement France
DN225	Mercure (Hg)	SFA / vapeurs froides (CV-AAS) [Minéralisation - Dosage par SFA] - NF EN ISO 17852	0.2	μg/l	
DN226	Cyanures totaux	Flux continu [Flux continu] - NF EN ISO 14403	10	μg/l	1
LS001	Mesure du pH	Potentiométrie - NF EN ISO 10523			1
	рН				
	Température de mesure du pH			°C	
LS045	Carbone Organique Total (COT)	Spectrophotométrie (IR) [Oxydation à chaud en milieu acide] - NF EN 1484	0.5	mg C/I	
LS064	Cyanures aisément libérables	Flux continu - NF EN ISO 14403-2	10	μg/l	1
LS105	Cuivre (Cu)	ICP/AES - NF EN ISO 11885	0.01	mg/l	1
LS109	Fer (Fe)	1	0.01	mg/l	1
LS111	Zinc (Zn)	1	0.02	mg/l	1
LS112	Zinc (Zn)	ICP/MS - NF EN ISO 17294-2	5	μg/l	1
LS115	Nickel (Ni)	ICP/AES - NF EN ISO 11885	0.005	mg/l	1
LS116	Nickel (Ni)	ICP/MS - NF EN ISO 17294-2	2	μg/l	1
LS122	Arsenic (As)	ICP/AES - NF EN ISO 11885	0.005	mg/l	1
LS127	Cadmium (Cd)	1	0.005	mg/l	1
LS129	Chrome (Cr)	1	0.005	mg/l	1
LS137	Plomb (Pb)		0.005	mg/l	1
LS151	Antimoine (Sb)	ICP/MS - NF EN ISO 17294-2	0.2	μg/l	1
LS153	Arsenic (As)	1	0.2	μg/l	1
LS158	Cadmium (Cd)		0.2	μg/l	1
LS162	Cuivre (Cu)	1	0.5	μg/l	1
LS184	Plomb (Pb)	1	0.5	μg/l	1
LSFDA	Fer (Fe)		0.001	mg/l	1
LSK98	Conductivité à 25°C	Potentiométrie [Méthode à la sonde] - NF EN 27888			
	Conductivité corrigée automatiquement à			μS/cm	
	25°C Température de mesure de la conductivité			°C	
LSKPN	Mercure	ICP/MS - NF EN ISO 17294-2	0.1	μg/l	

Sédiments

Code Analys	e	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site de :
LS863 Antimoine (Sb)	ENI	/AES [Minéralisation à l'eau régale] - NF ISO 11885 - NF EN 13346 Méthode B -	1	mg/kg M.S.	Eurofins Analyse pour l'Environnement France

Annexe technique

Dossier N° : 20E144448N° de rapport d'analyse :AR-20-LK-165371-02

Emetteur : Monsieur Harold LEFEVRE Commande EOL : 006-10514-631026

Nom projet : Référence commande :

Sédiments

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site de :
LS865	Arsenic (As)	1	1	mg/kg M.S.	
LS870	Cadmium (Cd)	1	0.4	mg/kg M.S.	
LS872	Chrome (Cr)	1	5	mg/kg M.S.	
LS874	Cuivre (Cu)	1	5	mg/kg M.S.	
LS876	Fer (Fe)	1	5	mg/kg M.S.	
LS881	Nickel (Ni)	1	1	mg/kg M.S.	
LS883	Plomb (Pb)	1	5	mg/kg M.S.	
LS894	Zinc (Zn)	1	5	mg/kg M.S.	
LS910	Cyanures aisément libérables (= Cyanures libres)	Flux continu [Extraction basique et dosage par flux continu] - NF EN ISO 17380+NF EN ISO 14403-2 (adapt. BO/SED)	0.5	mg/kg M.S.	
LS917	Cyanures totaux	1	0.5	mg/kg M.S.	
LSA07	Matière sèche	Gravimétrie - NF EN 12880	0.1	% P.B.	
LSA09	Mercure (Hg)	SFA / vapeurs froides (CV-AAS) [Minéralisation à l'eau régale] - NF EN 13346 Méthode B - Décembre 2000 (Norme abrog - NF ISO 16772 (Sol) - Méthode interne (Hors Sols)	0.1	mg/kg M.S.	
LSL42	Conductivité sur brut Conductivité corrigée automatiquement à 25°C Température de mesure de la conductivité	Potentiométrie [Méthode à la sonde] - Adaptée de NF EN 27888		μS/cm °C	
LSL4H	pH H2O pH extrait à l'eau Température de mesure du pH	Potentiométrie - Ad. NF ISO 10390 (SED) NF EN 12176 (abrogée,BOU)		°C	
LSSKM	Carbone organique total (COT) par combustion sèche (Sédiments) Carbone Organique Total par Combustion Coefficient de variation (CV)	Combustion [sèche] - NF EN 15936 - Méthode B	1000	mg/kg M.S.	
XXS01	Minéralisation eau régale - Bloc chauffant	Digestion acide -			
XXS06	Séchage à 40°C	Séchage [Le laboratoire travaillera sur la fraction <à 2mm de l'échantillon sauf demande explicite du client] - NF ISO 11464 (Boue et sédiments)			
XXS07	Refus Pondéral à 2 mm	Tamisage [Le laboratoire travaillera sur la fraction <à 2mm de l'échantillon sauf demande explicite du client] -	1	% P.B.	

Annexe de traçabilité des échantillons

Cette traçabilité recense les flaconnages des échantillons scannés dans EOL sur le terrain avant envoi au laboratoire

Dossier N°: 20E144448 N° de rapport d'analyse : AR-20-LK-165371-02

Emetteur: Commande EOL: 006-10514-631026

Nom projet : N° Projet : UMISFX20B Référence commande :

UMISFX

Nom Commande: UMISFX

Eau souterraine

N° Ech	Référence Client	Date & Heure Prélèvement			Code-Barre	Nom Flacon
006	bijounet filtré	26/08/2020	28/08/2020	28/08/2020		
007	bijournet eau	26/08/2020	28/08/2020	28/08/2020		

Sédiments

N° Ech	Référence Client	Date & Heure Prélèvement	Date de Réception Physique (1)	Date de Réception Technique (2)	Code-Barre	Nom Flacon
001	Sortie bassin	26/08/2020	28/08/2020	28/08/2020		
002	aval haldes	26/08/2020	28/08/2020	28/08/2020		
003	aval digue	26/08/2020	28/08/2020	28/08/2020		
004	aval aigue	26/08/2020	28/08/2020	28/08/2020		
005	bijournet	26/08/2020	28/08/2020	28/08/2020		

Date à laquelle l'échantillon a été réceptionné au laboratoire.
 Lorsque l'information n'a pas pu être récupérée, cela est signalé par la mention N/A (non applicable).

(2): Date à laquelle le laboratoire disposait de toutes les informations nécessaires pour finaliser l'enregistrement de l'échantillon.

ANNEXE 4 : Fiches de prélèvements ESU

Site: UMISFX-AVAL_DIGUE

Date: 26/08/2020

14h Heure:

Matériel d'analyse in situ :

Référence matériel d'analyse :

ND

ND

Opérateurs :

0 N° échant. : FD

20200826-Fiches prélèvement - Eaux superficielles - A220_2001 Localisation (berge, milieu du lit...):

Système de coordonnées: WGS84

Latitude : 44,04663 Longitude: 3,938357

Altitude : 319 m NGF

Description:

Périodicité du suivi : Mensuel

Etat de l'ouvrage : Pas d'écoulement d'eau, ni d'eau stagnante

Nature du substratum : Calcaire

Mesures in situ:

ND Date du dernier prélèvement :

Matériel utilisé (manuelle : flacon, sceau - automatique) : ND

Observations (aspect de l'eau, indices organoleptiques) : ND

Conditions météorologiques (étiage, crue, pluie) : ND

ND : Ha

ND Conductivité : μS/cm

ND °C Température de l'eau :

ND Débit : m³/h

Volumes prélevés : ND

Type de flaconnage : flaconnage Eurofins

Flaconnage (verre/plastique) : ND Présence de stabilisant (oui/non) : ND Type de stabilisant : ND

Mesures en laboratoire : effectuées par : Eurofins

Conservation des échantillons : Glacière avec pains de glaces le: ND

Envoyés / Récupérés le : ND

Réceptionnés au labo le : ND

Analyses demandées : ND

Résultats d'analyses : reçus le : ND

support :

Remarques diverses:

PAS D'EAU

Code barre:

20200826-Fiches prélèvement - Eaux superficielles - A220_2001

Site: UMISFX-AVAL_AIGUES

Date: 26/08/2020

16h00 Heure:

Opérateurs :

44008 Matériel d'analyse in situ :

Référence matériel d'analyse :

ND

ND

N° échant. :

Localisation (berge, milieu du lit...):

Système de coordonnées: WGS84

Latitude : 44,056111 Longitude: 3,935833

Altitude : 220 m NGF

Description:

Périodicité du suivi : Mensuel

Etat de l'ouvrage : Pas d'écoulement d'eau, ni d'eau stagnante

Nature du substratum : Calcaire

ED

Mesures in situ:

Conductivité :

Date du dernier prélèvement :

Matériel utilisé (manuelle : flacon, sceau - automatique) :

Observations (aspect de l'eau, indices organoleptiques) :

Conditions météorologiques (étiage, crue, pluie) :

ND : Ha

ND

ND

Température de l'eau :

ND Débit :

Volumes prélevés : ND

Type de flaconnage : flaconnage Eurofins

Flaconnage (verre/plastique) : ND Présence de stabilisant (oui/non) : ND Type de stabilisant : ND

Mesures en laboratoire : effectuées par : Eurofins

ND

ND

ND

μS/cm

°C

m³/h

Conservation des échantillons : Glacière avec pains de glaces le: ND

Envoyés / Récupérés le : ND

Réceptionnés au labo le : ND

Analyses demandées : ND

Résultats d'analyses : reçus le : ND

support :

Remarques diverses:

PAS D'EAU

Code barre:

20200826-Fiches prélèvement - Eaux superficielles - A220_2001

Site: UMISFX-SORTIE_BASSIN

Date: 26/08/2020

13h30 Heure:

Opérateurs :

0 N° échant. : ED

Localisation (berge, milieu du lit...):

Système de coordonnées : WGS84

Latitude : 44,046551 Longitude: 3,93591

Altitude : 348 m NGF

Description:

Périodicité du suivi : Mensuel

Etat de l'ouvrage : Pas d'écoulement d'eau, ni d'eau stagnante

Nature du substratum : Calcaire

Matériel d'analyse in situ :

ND

ND

Mesures in situ:

ND Date du dernier prélèvement :

Matériel utilisé (manuelle : flacon, sceau - automatique) : ND

Observations (aspect de l'eau, indices organoleptiques) : ND

Conditions météorologiques (étiage, crue, pluie) :

ND : Ha

ND Conductivité : μS/cm

ND °C Température de l'eau :

ND Débit : m³/h

Volumes prélevés : ND

Référence matériel d'analyse :

Type de flaconnage : flaconnage Eurofins

Flaconnage (verre/plastique) : ND Présence de stabilisant (oui/non) : ND Type de stabilisant : ND

Mesures en laboratoire : effectuées par : Eurofins

Conservation des échantillons : Glacière avec pains de glaces le: ND

Envoyés / Récupérés le : ND

Réceptionnés au labo le : ND

Analyses demandées : ND

Résultats d'analyses : reçus le : ND

support :

Remarques diverses:

PAS D'EAU

Code barre:

Site: UMISFX-AVAL_HALDES

Date: 26/08/2020

14h30 Heure:

Opérateurs :

0 N° échant. : ED

20200826-Fiches prélèvement - Eaux superficielles - A220_2001

Localisation (berge, milieu du lit...):

Système de coordonnées : WGS84

Latitude : 44,04722 Longitude: 3,93845

Altitude : 317 m NGF

Description:

Mesures in situ:

Périodicité du suivi : Mensuel

Etat de l'ouvrage : Pas d'écoulement d'eau, ni d'eau stagnante

Nature du substratum : Calcaire

Date du dernier prélèvement :

Matériel d'analyse in situ :

ND

ND

Matériel utilisé (manuelle : flacon, sceau - automatique) : ND

Observations (aspect de l'eau, indices organoleptiques) : ND

Conditions météorologiques (étiage, crue, pluie) : ND

ND Référence matériel d'analyse : : Ha

ND

ND Conductivité : μS/cm

ND °C Température de l'eau :

ND Débit : m³/h

Volumes prélevés : ND

Type de flaconnage : flaconnage Eurofins

Flaconnage (verre/plastique) :

ND Présence de stabilisant (oui/non) : ND

Type de stabilisant : ND

Mesures en laboratoire : effectuées par : Eurofins

Conservation des échantillons : Glacière avec pains de glaces le: ND

Envoyés / Récupérés le : ND

Réceptionnés au labo le : ND

Analyses demandées : ND

Résultats d'analyses : reçus le : ND

support :

Remarques diverses: Code barre:

PAS D'EAU

: Fiches de prélèvements ESO **ANNEXE 5**

pour

41

FICHE DE PRELEVEMENT EAU SOUTERRAINE (A210)

Site:

Forage / Piezo n°:

Date-Heure:

Périodicité du suivi:

Source

14h30

Mensuel

Opérateur :

NE

20200826-Fiches prélèvement - Eaux souterraines - A210 2001

Système de coordonnées : Conditions météo : Latitude : 44,04666 Ensoleillé

Longitude: 3,92804 Altitude (m NGF): 255m

Description de l'ouvrage : Date de création :

A = Diamètre de l'ouvrage : ND
B = Hauteur entre le haut du tube (repère pour mesure du niveau

statique) et le terrain :

C = Hauteur du tube plein : ND
D = Hauteur de l'ouvrage : ND

E = Hauteur entre la crépine et le fond de l'ouvrage : ND
F = Largeur de l'ouvrage (tube + massif filtrant) : ND
Vm = Volume au mètre du puits :L/m

Vp = Volume du puits (entre niveau piezo et base des crépines) (L) :

Matériau du tube et des crépines : ND
Ouverture des crépines (mm) : ND
Nature du massif filtrant : ND

Transmissivité:

Rabattement spécifique (h du rabattement/débit pompé): Instructions - Procédures de prélèvement Procédures réalisées - Mesures in situ : PURGE PURGE Matériel : nature des matériaux constitutifs : Mesures à faire avant toute opération : Pompe: ND G = Niveau eau (m/repère) : H = Fond forage (m/repère): ND ND Tuvaux : Paramètres mesurés ou observés : ND Mesure de débit : ND Présence de phase libre plongeant/surnageant (cm) : Temps de purge (min) : ND Procédure : ND Vol. purgé (L): ND Position de la pompe (pompe fixe) : m/repère ND Débit de la purge (m³/h) : Colonne d'eau "balayée" par la pompe : entre Observations: et Durée de la purge (min) : Débit de purge (L/min) : m3/h Mesures avant purge: Volume à purger :L ND Température de l'eau : 17.4°C °C ND Conductivité: $\mu S/cm$ à°C Rabattement max (m/repère) = 1610 μS/cm Lieu de rejet de l'eau purgée : ND Oxygène dissous: ND g/L - % O₂ Paramètres à contrôler : Température - Conductivité - Oxygène pH: 8,1 Redox (mV): ND pH - Redox - Turbidité - Couleur - Odeur Turbidité : Claire Autres consignes : Couleur: Rouille Odeur: NON **PRELEVEMENTS PRELEVEMENTS** Niveau de l'eau avant prélèvement : Matériel : nature des matériaux constitutifs : ND Echantilloneur : Câble ou filin : Débit du prélèvement : ND L/min Pompe :Tuyaux : Heure de début : ND Température de l'eau : 17.4°C °C Mesure de débit : Température de l'air : 30°C °C Procédure : Position de la pompe : m/repère Conductivité : 1631 μ S/cm à°C Débit du prélèvement :L/min Oxygène dissous : ND g/L - % O₂ Niveau du prélèvement (préleveur) : m/repère pH: 8,12 Redox (mV): ND Débuter le prélèvement après : Turbidité : Claire Blanc terrain : Nettoyage du matériel avec : Couleur : Rouille Odeur: NON Autres consignes : Observations:

Flaconnage (plastique/verre) : Verre et PE Matériels : Waterproof pen tester

Présence de stabilisant (oui/non) : OUI/NON Références matériels : 7200pH/Cond/TDS/Salt/Temp
Type de stabilisant : HCI, HNO3, NaOH

Mesures en laboratoire : Effectuées par : Eurofins

Conservation des échantillons : Glacière avec pains de glace Date : 28/08/2020

Envoyés / récupérés le : 27/08/2020

FLACONNAGE

Sb, Fe, Cd, Cu, As, Ni, Pb, Cr,

Réceptionnés au laboratoire le : 28/08/2020 Analyses demandées : Hg, Zn sur filtré et total, COT,

Cyanures

MATERIEL

Résultats d'analyses : reçus le : 26/09/2020

support : Mail

Remarques diverses : Prélévement effectué à 20 m de la résurgence

ANNEXE 6 : Fiches de prélèvements SED

Site: UMISFX-SORTIE_BASSIN

Date: 26/08/2020

Opérateur : ED

Zone : SORTIE BASSIN REGULATION

20200826-Fiches prélèvement - Sédiment - A220_2001

Photos du prélèvement :

<u>Conditions météo</u>: Ensoleillé

Coordonnées GPS (Lambert 93)

X 3,94 775205,4 Y 44,05 6328026,7

Z 348,00 Echantillon moyen:

Outil de prélèvement : Mains gantées ou pelle à mains

Nombre de prélèvements : 2

Mise en flacons : Flacon en verre

Mesure de Terrain :

Matériel : ND

Référence matériel : Pas de mesure IN SITU

Observations sur les échantillons moyens					
Nature des matériaux prélevés	Indices organoleptiques	Observations diverses	Analyses réalisées		
Limons fins	Aucun	Substratum calcaire - Limons gris/ocre	Sb, Fe, Cu, Cd, Zn, As, Pb, Cr,Ni, Hg - COT - Cyanures		

Mesures en laboratoire : effectuées par : EUROFINS

le: 26/09/2020

Conservation des échantillons : Glacière avec pains de glace

Analyses demandées : Sb, Fe, Cu, Cd, Zn, As, Pb, Cr,Ni, Hg - COT - Cyanures

Glaciere avec pains de glace Analyses demandees : COT - Cyani

Envoyés / Récupérés le : 27/08/2020 Réceptionnés au labo le : 28/08/2020

Résultats d'analyses : 28/08/2020 support : mail

Remarques diverses : Le lit du cours d'eau était à sec.

UMISFX-SOURCE_BIJOURNET Site:

Date : 26/08/2020

Opérateur : ED SOURCE

20200826-Fiches prélèvement - Sédiment - A220_2001

Photos du prélèvement :

Conditions météo : Ensoleillé

Coordonnées GPS (Lambert 93)

3,93 774371,9 44,05 6327954,6

255,00 Echantillon moyen:

Mains gantées ou pelle à mains Outil de prélèvement :

Nombre de prélèvements : 2

Mise en flacons : Flacon en verre

Mesure de Terrain :

Matériel :

Référence matériel : Pas de mesure IN SITU

Observations sur les échantillons moyens					
Nature des matériaux prélevés	Indices organoleptiques	Observations diverses	Analyses réalisées		
Limons ocres	Couleur rouille, présence d'hydroxyde de fer	Substratum calcaire - Limon ocre	Sb, Fe, Cu, Cd, Zn, As, Pb, Cr,Ni, Hg - COT - Cyanures		

Mesures en laboratoire : effectuées par : EUROFINS

26/09/2020 le:

Analyses demandées : Sb, Fe, Cu, Cd, Zn, As, Pb, Cr,Ni, Hg - COT - Cyanures Conservation des Glacière avec pains de glace

échantillons :

Envoyés / Récupérés le : 27/08/2020

Réceptionnés au labo le : 28/08/2020

Résultats d'analyses : 28/08/2020 support : mail

Remarques diverses : Sédiments prélevés dans les zones "mortes", sans courant.

UMISFX-AVAL_DIGUE Site:

26/08/2020 Date :

Opérateur : ED

PIED DE DIGUE

20200826-Fiches prélèvement - Sédiment - A220_2001

<u>Photos du prélèvement</u> :

Conditions météo : Ensoleillé

Coordonnées GPS (Lambert 93)

3,94 775198,7 44,05 6327961,1

319,00

Echantillon moyen: Mains gantées ou pelle à mains Outil de prélèvement :

Nombre de prélèvements : 2

Mise en flacons : Flacon en verre

Mesure de Terrain :

Matériel :

Référence matériel : Pas de mesure IN SITU

	Observations sur les échantillons moyens					
Nature des matériaux prélevés	Indices organoleptiques	Observations diverses	Analyses réalisées			
Limons fins	Sans	Substratum calcaire - Limons gris/ocre	Sb, Fe, Cu, Cd, Zn, As, Pb, Cr,Ni, Hg - COT - Cyanures			

Mesures en laboratoire : effectuées par : EUROFINS

26/09/2020 le:

Analyses demandées : Sb, Fe, Cu, Cd, Zn, As, Pb, Cr,Ni, Hg - COT - Cyanures Conservation des Glacière avec pains de glace

échantillons :

Envoyés / Récupérés le : 27/08/2020 Réceptionnés au labo le : 28/08/2020

Résultats d'analyses : 28/08/2020 support : mail

Lit du cours d'eau à sec Remarques diverses :

Site: UMISFX-AVAL_AIGUES

Date : 26/08/2020

Opérateur : ED

Zone: AIGUES MORTE

20200826-Fiches prélèvement - Sédiment - A220_2001

Photos du prélèvement :

<u>Conditions météo :</u> Ensoleillé

Coordonnées GPS (Lambert 93)

X 3,94 774984,0 Y 44,06 6329012,0

Z 220,00 Echantillon moyen:

Outil de prélèvement : Mains gantées ou pelle à mains

Nombre de prélèvements : 2

Mise en flacons : Flacon en verre

Mesure de Terrain :

Matériel : ND

Référence matériel : Pas de mesure IN SITU

Nature des matériaux prélevés Indices organoleptiques Observations diverses Analyses réalisées Sables - limons fins Sans Substratum calcaire - Sables- Limons ocre Sb, Fe, Cu, Cd, Zn, As, Pb, Cr, Ni, Hg - COT - Cyanures		Observations sur les échantillons moyens					
I Sanies - limons fins I Sans I Sinstratiim calcaire - Sanies - Limons ocre I	Nature des matériaux prélevés	Indices organoleptiques	Observations diverses	Analyses réalisées			
	Sables - limons fins	Sans	Substratum calcaire - Sables- Limons ocre				

Mesures en laboratoire : effectuées par : EUROFINS

le: 26/09/2020

Conservation des échantillons : Glacière avec pains de glace

Analyses demandées : Sb, Fe, Cu, Cd, Zn, As, Pb, Cr,Ni, Hg -

COT - Cyanures

 Envoyés / Récupérés le :
 27/08/2020

 Réceptionnés au labo le :
 28/08/2020

Résultats d'analyses : 28/08/2020 support : mail

Remarques diverses : Lit du cours d'eau à sec, sédiment prélevé dans les zones "mortes". Granulométrie élevée - Sables, peu de limons.

Site: UMISFX-AVAL_HALDES

Date: 26/08/2020

Opérateur : ED

Zone : HALDES

20200826-Fiches prélèvement - Sédiment - A220_2001

Photos du prélèvement :

<u>Conditions météo :</u> Ensoleillé

Coordonnées GPS (Lambert 93)

X 3,94 775205,4 Y 44,05 6328026,7

Z 317,00 Echantillon moyen:

Outil de prélèvement : Mains gantées ou pelle à mains

Nombre de prélèvements : 2

Mise en flacons : Flacon en verre

Mesure de Terrain :

Matériel : ND

Référence matériel : Pas de mesure IN SITU

SIXING		1	3
1-1/4		No.	-
	() 是		
* 4			
		100	
MAN !	5	131	19
X	A STATE OF THE PARTY OF THE PAR		1
	A SHE		
《美国》	10000000000000000000000000000000000000	The safe	
		4	K
Residence of the second	100	加州	THE STATE OF THE PARTY OF THE P

	Observations sur les échantillons moyens						
Nature des matériaux prélevés	Indices organoleptiques	Observations diverses	Analyses réalisées				
Limons fins	Aucun	Substratum calcaire - Limons gris/ocre	Sb, Fe, Cu, Cd, Zn, As, Pb, Cr,Ni, Hg - COT - Cyanures				

Mesures en laboratoire : effectuées par : EUROFINS

le: 26/09/2020

Conservation des échantillons :

Glacière avec pains de glace

Analyses demandées :

Sb, Fe, Cu, Cd, Zn, As, Pb, Cr,Ni, Hg COT - Cyanures

Envoyés / Récupérés le : 27/08/2020 Réceptionnés au labo le : 28/08/2020

Résultats d'analyses : 28/08/2020 support : mail

Remarques diverses : Le lit du cours d'eau était à sec.

ANNEXE 7 : Fiche flaconnage

Récipient	volume (ml)	stabilisant	Paramètre et volume minimum par échantillon en mL	Visuel code barre
	200 mL bouchon noir	HNO ₃	AOX	1072 000000
	250 bouchon vert	H ₂ SO ₄	COT (25) ou COD (25) Détergents anioniques (100) Substances extractibles (25)	1002 000000
 ≺E	500 bouchon bleu	aucun	HAP (500) PCB (500)	1005 000000
VERRE	60 bouchon vert	NaOH	Cyanures (20) Sulfures (20) Sulfites (20)	1004 000000
	40 bouchon vert	H ₂ SO₄	HCT GC C ₁₀ -C ₄₀ BTEX COHV HCT C ₆ -C ₁₂ Indice phénol TPH (2 vials)	1007 000000
	120 bouchon blanc	aucun	Mercure (120)	1003 000000
	500 bouchon rouge	Na ₂ SO ₃	POC (un flacon / échantillon) POP (un flacon / échantillon) POA (un flacon / échantillon) autres pesticides (2 flacons / échantillon)	¢.
	250 bouchon bleu	aucun	DBO (250) un flacon pH + conductivité TA / TAC / TH turbidité / Chlore Fluorure un flacon	1070 000000
ne	1000 bouchon bleu	aucun	MES / MESO (1000) Autres composés (nous consulter)	1050 000000
Plastique	60 bouchon bleu	aucun	anions, NH₄ (sur eau propre) Cr VI, métaux solubles	1080 000000
Ple	40 bouchon blanc	HNO ₃	Métaux (hors mercure et métaux solubles)	1100 00000
	250 bouchon vert	H₂SO₄	DCO, NH ₄ (sur eau sale) N-Kjeldahl (100) indice KMnO4 (50)	1090 000000
	Liste du flacon	nage pour	les échantillons de sol ou matrice solide	
Récipient	volume (ml)	Additif	Paramètre	Visuel code barre
pot de verre	375	aucun	4 paramètres courants maximum	1008 000000
Plastique	1800	aucun	Lixitest / Lixiflash / Essai de lixiviation	1600 000000
Kit COVs	kit (1008 + 100 ml verre (méthanol) + carotteur)		COVs 📀	+ + +

www.minelis.com

MINELIS SAS, Société par Actions Simplifiée au capital de 30 000 Euros – Représentant légal : N. SAUZAY

8 rue Paulin Talabot, 31100 TOULOUSE – Tél : 05 61 16 54 71 – Fax : 01 73 64 69 87 – Email : contact@minelis.com

RC Toulouse B 435 308 184 00033 - APE: 7112B - TVA: FR81 435 308 184