ÉSSAI PORCHET - TARIERE

Date : 12/12/2012
Étude : St Laurent le Pinier
Mesures par : B. Durbéarnes

<table>
<thead>
<tr>
<th>Repère mesures :</th>
<th>Alt. Repère (m/sol)</th>
<th>Rayon (m)</th>
<th>Profondeur avant essai P1 : h₁ : 0.28 m</th>
<th>Profondeur après essai P2 : h₂ : 0.35 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPS (mn)</td>
<td>n (m)</td>
<td>H (m)</td>
<td>r (m)</td>
<td>H + r/2</td>
</tr>
<tr>
<td>0</td>
<td>0.25</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.28</td>
<td>0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.25</td>
<td>0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>0.22</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.19</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>0.18</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.16</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>0.15</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.16</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.12</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.10</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.07</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Terrain testé :
Sol brun clair caillouteux
Pente raideuse
Les Avinieres pôle ERO3

Profondeur moyenne

\[P_m = \frac{P_1 + P_2}{2} \]

\[H = P_m - n \]

\[n = 0.36 \text{ m} \]

K, \(r \) et \(t \) :

\[K = 1.15 \times 10^{-5} \text{ m/s} \]

\[r \text{ en mètres} = 1.15 \times 0.35 \times 1.80 \]

\[t \text{ en secondes} = 0.3 - 0.1 \]

Diagramme de représentation graphique des mesures de temps et de profondeur.
ESSAI PORCHET - TARIERE

DATE: 12/02/12
ETUDE: LAURENT LE MINIER
MESURES PAR: B. DUBÉARNES

<table>
<thead>
<tr>
<th>TEMPS (mn)</th>
<th>n (m)</th>
<th>Charge H (m)</th>
<th>H + r/2</th>
<th>TEMPS (mn)</th>
<th>n (m)</th>
<th>Charge H (m)</th>
<th>H + r/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.335</td>
<td>0.37</td>
<td></td>
<td>0.5</td>
<td>0.225</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.165</td>
<td>0.20</td>
<td></td>
<td>1.5</td>
<td>0.135</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.105</td>
<td>0.14</td>
<td></td>
<td>2.5</td>
<td>0.085</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.075</td>
<td>0.11</td>
<td></td>
<td>3.5</td>
<td>0.065</td>
<td>0.10</td>
<td></td>
</tr>
</tbody>
</table>

Terrain testé:
- Terre broune jaune très caillouteuse.
- Haute caillouteuse des aulnées

Profondeur avant essai P1: 8.33 m
Profondeur après essai P2: 8.35 m

Terrain:

- Profondeur moyenne:
 \[
 P_m = \frac{P_1 + P_2}{2}

 H = P_m - n

 K = 1.15 \cdot \log \left(\frac{H + r/2}{H - r/2} \right) - \log \left(\frac{t_2 - t_1}{t_2 - t_1} \right)\]

- r en mètres = 1.15 \cdot \sqrt{2.79 - 0.1} \cdot 180

- K = 8.5 \cdot 10^{-5} m/s
ESSAI PORCHET - TARIERE

DATE : 12/12/12
ETUDE : SYLAURENT LE FINIER
MESURES PAR : D. DEBOARNE

Repère mesures :

<table>
<thead>
<tr>
<th>TEMPS (mn)</th>
<th>n (m)</th>
<th>Charge H (m)</th>
<th>H + r/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0.27</td>
<td>0.31</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td>0.12</td>
<td>0.16</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0.08</td>
<td>0.12</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td>0.06</td>
<td>0.10</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td>0.03</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Terrain testé :

- Terre fine gris-jaune à petits cailloux gris
- Pêche jaune épaisseurs du sable blanchâtre
- Sol plat, humide

Profondeur moyenne

\[
P_m = \frac{P_1 + P_2}{2}
\]

\[
H = P_m - \frac{P_m}{n}
\]

\[
K = 3.14 \times 10^{-5} \text{ m/s}
\]

Profondeur avant essai P1 : 0.35 m

Profondeur après essai P2 : 0.33 m

K = 1.15 \times \log(H1 + r/2) - \log(H2 + r/2) \times \frac{1}{t_2 - t_1}

\[
\text{en mètres : } 1.5 \times 0.08 \times \frac{240}{2580}
\]

Diagramme :

- **Temps (mn)**
- **H + r/2**
- **Charge H (m)**
- **Y = 2.5**

Note :

- Le graphique montre la détermination de la vitesse de infiltration de l'eau dans le sol en fonction du temps.
- Les mesures de charge H et température H + r/2 sont notées pour chaque intervalle de temps.
- La formule utilisée pour calculer la vitesse K est donnée dans le texte.
ESSAI PORCHET - TARIERE

DATE: 13/12/12
ETUDE: SAINT-LOY-LE-MINIER
MESURES PAR: B. DE BEARNES

<table>
<thead>
<tr>
<th>Repère mesures</th>
<th>Alt. Repère (m/sol)</th>
<th>Rayon (m)</th>
<th>Profondeur avant essai P1</th>
<th>Profondeur après essai P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>sol</td>
<td>0</td>
<td>0.06</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEMPS (mn)</th>
<th>n (m)</th>
<th>Charge H (m)</th>
<th>H + r/2</th>
<th>TEMPS (mn)</th>
<th>n (m)</th>
<th>Charge H (m)</th>
<th>H + r/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.19</td>
<td>0.52</td>
<td></td>
<td>0</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.18</td>
<td>0.508</td>
<td></td>
<td>1</td>
<td>0.138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.19</td>
<td>0.50</td>
<td></td>
<td>2</td>
<td>0.125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.465</td>
<td>0.435</td>
<td></td>
<td>3</td>
<td>0.125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.16</td>
<td>0.49</td>
<td></td>
<td>6</td>
<td>0.125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.185</td>
<td>0.465</td>
<td></td>
<td>9</td>
<td>0.395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.185</td>
<td>0.465</td>
<td></td>
<td>12</td>
<td>0.395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.185</td>
<td>0.465</td>
<td></td>
<td>15</td>
<td>0.395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.183</td>
<td>0.453</td>
<td></td>
<td>20</td>
<td>0.362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.185</td>
<td>0.439</td>
<td></td>
<td>30</td>
<td>0.354</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>0.185</td>
<td>0.434</td>
<td></td>
<td>45</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Terrain testé:
Rouleau minier fin rouge
Bassin n° 1

- Profondeur moyenne: $P_m = P_1 + P_2 = \frac{0.53}{2}$
- $H = P_m - n$
- $K = 1.15 \times \log(H + r/2) - \log(H2 + r/2)$
- r en mètres
- t en secondes

Diagramme

\[K = 3.95 \times 10^{-5} \text{ m/s} \]
ÉSSAI PORCHET - TARIÈRE

DATE: 13/12/12 **ETUDE:** ST LAURENT LE MINIER **MESURES PAR:** B. DUBÉARNÈS

<table>
<thead>
<tr>
<th>Repère mesures</th>
<th>Alt. Repère (m/sol)</th>
<th>Rayon (m) r: 0.06</th>
<th>Profondeur avant essai P1:m</th>
<th>Profondeur après essai P2: 0.63 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPS (mn)</td>
<td>n (m)</td>
<td>Charge H (m)</td>
<td>H + r/2</td>
<td>TEMPS (mn)</td>
</tr>
<tr>
<td>0</td>
<td>0.63</td>
<td>0.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.66</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.66</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.66</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.66</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.66</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.66</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.66</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.66</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.66</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.66</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.66</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.66</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Terrain testé :
Rougeau miniature pin rouge
Bassin n°1
(niveau initial à 0.46 m en pin d'essai = niveau piézo)

Profondeur moyenne
\[P_m = \frac{P_1 + P_2}{2} \]
\[H = P_m - n \]
\[K = 1.15 \cdot 10^{-6} \text{ m/s} \]

![Diagram](image)
ESSAI PORCHET - TARIERE

DATE : 13/12/12

ETUDE : SY-LAIRENT LE PINIER

MESURES PAR : B. JIBBEARNES

<table>
<thead>
<tr>
<th>Repère mesures</th>
<th>Alt. Repère (m/sol)</th>
<th>Rayon (m)</th>
<th>TEMPS (mn)</th>
<th>n (m)</th>
<th>Charge H (m)</th>
<th>H + n/2</th>
<th>TEMPS (mn)</th>
<th>n (m)</th>
<th>Charge H (m)</th>
<th>H + n/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.545</td>
<td>0.595</td>
<td>3</td>
<td>0.465</td>
<td>0.145</td>
<td>0.655</td>
<td>4</td>
<td>0.40</td>
<td>0.13</td>
<td>0.53</td>
</tr>
<tr>
<td>1</td>
<td>0.59</td>
<td>0.53</td>
<td>5</td>
<td>0.375</td>
<td>0.065</td>
<td>0.405</td>
<td>6</td>
<td>0.352</td>
<td>0.382</td>
<td>0.352</td>
</tr>
<tr>
<td>2</td>
<td>0.64</td>
<td>0.69</td>
<td>7</td>
<td>0.395</td>
<td>0.335</td>
<td>0.335</td>
<td>8</td>
<td>0.395</td>
<td>0.335</td>
<td>0.335</td>
</tr>
<tr>
<td>3</td>
<td>0.40</td>
<td>0.48</td>
<td>9</td>
<td>0.305</td>
<td>0.24</td>
<td>0.24</td>
<td>10</td>
<td>0.35</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>4</td>
<td>0.13</td>
<td>0.18</td>
<td>11</td>
<td>0.385</td>
<td>0.15</td>
<td>0.15</td>
<td>12</td>
<td>0.35</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>5</td>
<td>0.12</td>
<td>0.15</td>
<td>13</td>
<td>0.455</td>
<td>0.12</td>
<td>0.45</td>
<td>14</td>
<td>0.40</td>
<td>0.12</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Terrain testé :

- Terre agricole gris-brun
- Près fauge poussiére
- Ancien Jardin "Delmot"

Profondeur moyenne

\[
Pm = \frac{P1 + P2}{2} = \frac{0.30 + 0.352}{2} = 0.326 \text{ m}
\]

K = 1.16 \times \log(H1 + n/2) - \log(H2 + n/2)

\[
r = 1.16 \times \log(1.35 + 0.06) - \log(1.45 + 0.06) = 2.05 - 0.2\text{ m/s}
\]

K = \frac{1.34}{3.34 - 10^{-6}} \text{ m/s}
<table>
<thead>
<tr>
<th>TEMPS (mn)</th>
<th>n (m)</th>
<th>Charge H (m)</th>
<th>H + r/2</th>
<th>TEMPS (mn)</th>
<th>n (m)</th>
<th>Charge H (m)</th>
<th>H + r/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.24</td>
<td>0.30</td>
<td>2.0</td>
<td>0.922</td>
<td>0.122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.24</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.49</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.435</td>
<td>0.135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.16</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.155</td>
<td>0.135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.148</td>
<td>0.178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.155</td>
<td>0.165</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.127</td>
<td>0.152</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.13</td>
<td>0.119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.142</td>
<td>0.112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.106</td>
<td>0.136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.10</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Terrain testé : Terre caillouteuse grise

Site ERO 4

Profondeur moyenne
\[P_m = \frac{P_1 + P_2}{2} \]

\[H = P_m - n \]

\[r = \frac{K}{1.15 \log (H1 + r/2) - \log (H2 + r/2)} \]

\[t = \text{en secondes} \]

\[K = 4.1 \times 10^{-6} \text{ m/s} \]
ESSAI PORCHET - TARIERE

DATE: 23/04/15
ETUDE: DUFNE & LAURENT LOITZET
MESURES PAR: B. DUBREUILL

<table>
<thead>
<tr>
<th>TEMPS (mn)</th>
<th>n (m)</th>
<th>Charge</th>
<th>H (m)</th>
<th>H + r/2</th>
<th>TEMPS (mn)</th>
<th>n (m)</th>
<th>Charge</th>
<th>H (m)</th>
<th>H + r/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,36</td>
<td>0,37</td>
<td></td>
<td></td>
<td>0,3</td>
<td>0,36</td>
<td>0,34</td>
<td>0,34</td>
<td></td>
</tr>
<tr>
<td>0,5</td>
<td>0,36</td>
<td>0,33</td>
<td></td>
<td></td>
<td>0,34</td>
<td>0,36</td>
<td>0,34</td>
<td>0,34</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,37</td>
<td>0,3</td>
<td></td>
<td></td>
<td>0,323</td>
<td>0,37</td>
<td>0,323</td>
<td>0,323</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,12</td>
<td>0,265</td>
<td>2</td>
<td>0,282</td>
<td>0,282</td>
<td>0,12</td>
<td>0,282</td>
<td>0,282</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0,14</td>
<td>0,24</td>
<td>3</td>
<td>0,235</td>
<td>0,235</td>
<td>0,14</td>
<td>0,235</td>
<td>0,235</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0,15</td>
<td>0,222</td>
<td>4</td>
<td>0,214</td>
<td>0,214</td>
<td>0,15</td>
<td>0,214</td>
<td>0,214</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0,16</td>
<td>0,212</td>
<td>5</td>
<td>0,196</td>
<td>0,196</td>
<td>0,16</td>
<td>0,196</td>
<td>0,196</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0,17</td>
<td>0,212</td>
<td>6</td>
<td>0,183</td>
<td>0,183</td>
<td>0,17</td>
<td>0,183</td>
<td>0,183</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0,18</td>
<td>0,423</td>
<td>7</td>
<td>0,459</td>
<td>0,459</td>
<td>0,18</td>
<td>0,459</td>
<td>0,459</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0,19</td>
<td>0,16</td>
<td>8</td>
<td>0,458</td>
<td>0,458</td>
<td>0,19</td>
<td>0,458</td>
<td>0,458</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0,2</td>
<td>0,148</td>
<td>9</td>
<td>0,405</td>
<td>0,405</td>
<td>0,2</td>
<td>0,405</td>
<td>0,405</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0,21</td>
<td>0,134</td>
<td>10</td>
<td>0,355</td>
<td>0,355</td>
<td>0,21</td>
<td>0,355</td>
<td>0,355</td>
<td></td>
</tr>
</tbody>
</table>

Terrain testé:
- Résidu minier rouge
- Bassin n°3 pres bassin n°6
- Fûts en plastique ou doubts de 0,1m

Profondeur moyenne
\[Pm = P1 + P2 \]
\[H = \frac{Pm}{2} \]

K
\[K = 1,15 \log (H1 + r/2) - \log (H2 + r/2) \]
\[r = \text{en mètres} \quad 0,15 \times 0,06 = 0,15 \times 0,15 \]
\[t = \text{en secondes} \quad 12 \times 60 \]

K = 1,68 m/s
Etude : ADEME - St Laurent le Minier

Essai réalisé par : B. DUBEARNES

Granulométrie d(0,5) : 18,86 µm

CARACTERISTIQUES DU SOL TESTÉ

Nature du sol : Remblais miniers très fins, rouges

<table>
<thead>
<tr>
<th>Sol saturé</th>
<th>Sol humide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse brute humide M_{bw}</td>
<td>208,3 g</td>
</tr>
<tr>
<td>Masse Tare M_t</td>
<td>1,8 g</td>
</tr>
<tr>
<td>Masse nette humide M_{nw}</td>
<td>206,5 g</td>
</tr>
<tr>
<td>Section intérieure carottier S</td>
<td>11,0 cm²</td>
</tr>
<tr>
<td>Volume échantillon V</td>
<td>11,0 cm³</td>
</tr>
<tr>
<td>Masse vol humide M_v</td>
<td>116,0 g</td>
</tr>
<tr>
<td>Masse sol sec M_s</td>
<td>1,78 g</td>
</tr>
<tr>
<td>Masse volumique sol sec ρ_d</td>
<td>139,3 g/cm³</td>
</tr>
<tr>
<td>Masse d'eau M_w</td>
<td>1,20 g</td>
</tr>
<tr>
<td>Teneur en eau massique W</td>
<td>67,2 %</td>
</tr>
<tr>
<td>Teneur en eau volumique θ</td>
<td>0,48 g/cm³</td>
</tr>
<tr>
<td>% saturation</td>
<td>0,58 %</td>
</tr>
<tr>
<td>Porosité ε</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Unités

- g
- g
- cm²
- cm
- cm³
- g/cm³
- g
- g/cm³
- %
- %

ESSAI D'INFILTRATION

<table>
<thead>
<tr>
<th>N° injection</th>
<th>Durée infiltration (mm)</th>
<th>Temps cumulé (mn)</th>
<th>Hauteur d'eau unitaire par injection (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>20</td>
<td>160</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>25</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>35</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>11,5</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>45</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>12,5</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>55</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>65</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>70</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>85</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>95</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>105</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>115</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>120</td>
<td>0</td>
</tr>
</tbody>
</table>

Diamètre anneau d'infiltration (cm) : 20

Section (cm²) : 314,15

Volumes unitaires infiltrés (cm³) : 100

Hauteur d'eau unitaire par injection (mm) : 3,2

Infiltration cumulée en fonction du temps

Flux d'infiltration

- Vitesse d'infiltration (V_s) à saturation : 0,0044 mm/s, 4,40E-06 m/s
- Vitesse de pore (V_s/ε) : 0,007593 mm/s, 7,59E-06 m/s, 0,66
CARACTERISTIQUES DU SOL TESTÉ

Nature du sol : remblais miniers très fins, rouges

| Granulométrie d(0,5) : | 7,61 µm |

<table>
<thead>
<tr>
<th>Unités</th>
<th>Sol saturé</th>
<th>Sol humide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse brute humide M_{bw}</td>
<td>199,1 g</td>
<td>207,2 g</td>
</tr>
<tr>
<td>Masse Tare M_t</td>
<td>1,8 g</td>
<td>1,8 g</td>
</tr>
<tr>
<td>Masse nette humide M_{nw}</td>
<td>197,3 g</td>
<td>205,4 g</td>
</tr>
<tr>
<td>Section intérieure carottier S</td>
<td>11,0447 cm</td>
<td>11,0447 cm</td>
</tr>
<tr>
<td>Longueur carottier L</td>
<td>10,4 cm</td>
<td>10,8 cm</td>
</tr>
<tr>
<td>Volume échantillon V</td>
<td>114,9 g/cm³</td>
<td>119,3 g/cm³</td>
</tr>
<tr>
<td>Masse vol humide M_v</td>
<td>1,72 g</td>
<td>1,72 g</td>
</tr>
<tr>
<td>Masse sol sec M_s</td>
<td>147,9 g</td>
<td>154,7 g</td>
</tr>
<tr>
<td>Teneur en eau massique W</td>
<td>1,29 g/g</td>
<td>1,30 g/g</td>
</tr>
<tr>
<td>Masse volumique eau ρ_{ew}</td>
<td>49,4 g/cm³</td>
<td>50,7 g/cm³</td>
</tr>
<tr>
<td>Masse d'eau M_w</td>
<td>0,33 g</td>
<td>0,33 g</td>
</tr>
<tr>
<td>Teneur en eau volumique θ</td>
<td>0,430 g/cm³</td>
<td>0,425 g/cm³</td>
</tr>
<tr>
<td>% saturation</td>
<td>100 %</td>
<td>98,8 %</td>
</tr>
<tr>
<td>Porosité ε</td>
<td>43,0 %</td>
<td>43,0 %</td>
</tr>
</tbody>
</table>

Sol saturé : prélevé au centre de l’anneau après essai

Sol humide : prélevé près de l’anneau d’essai (conditions du sol avant essai)

ESSENTIELS D'INFILTRATION

Diamètre anneau d’infiltration (cm) :

- **N° injection**
 - 1 : 0,42 mm
 - 2 : 1,08 mm
 - 3 : 1,5 mm
 - 4 : 2 mm
 - 5 : 2,5 mm
 - 6 : 3 mm
 - 7 : 3,5 mm
 - 8 : 4 mm
 - 9 : 4,5 mm
 - 10 : 5 mm
 - 11 : 5,5 mm
 - 12 : 6 mm
 - 13 : 6,5 mm
 - 14 : 7 mm
 - 15 : 7,5 mm
 - 16 : 8 mm
 - 17 : 8,5 mm
 - 18 : 9 mm
 - 19 : 9,5 mm
 - 20 : 10 mm
 - 21 : 10,5 mm

Durée infiltration (mn) :

- **Temps cumulé (mn)** :
 - 0
 - 0,42
 - 1,08
 - 2
 - 2,5
 - 4
 - 5
 - 6
 - 7
 - 8
 - 9
 - 10
 - 11
 - 12
 - 13
 - 14
 - 15
 - 16
 - 17
 - 18
 - 19
 - 20
 - 21

Hauteur d’eau unitaire par injection (mm) :

- **Volumes unitaires infiltrés (cm³) :** 100

Volume infiltré cumulé (mm) :

- **Temps cumulé (mn)** :
 - 0
 - 0,42
 - 1,08
 - 2
 - 2,5
 - 4
 - 5
 - 6
 - 7
 - 8
 - 9
 - 10
 - 11
 - 12
 - 13
 - 14
 - 15
 - 16
 - 17
 - 18
 - 19
 - 20
 - 21

Flux d’infiltration

- **Vitesse d’infiltration (V_s) à saturation :** 0,025 mm/s
 - 2,50E-05 m/s

- **Vitesse de pore (V_s/ε) :** 0,05813 mm/s
 - 5,81E-05 m/s
 - 5,02 m/j
ESSAI BEST - MESURES REALISEES

Nature du sol : remblais miniers très fins, rouges ; sol humide

| Granulométrie d(0,5) : | 68,6 µm |

CARACTERISTIQUES DU SOL TESTE

<table>
<thead>
<tr>
<th>Nature du sol :</th>
<th>remblais miniers très fins, rouges ; sol humide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol saturé :</td>
<td>prélevé au centre de l’anneau après essai</td>
</tr>
<tr>
<td>Sol humide :</td>
<td>prélevé près de l’anneau d’essai (conditions du sol avant essai)</td>
</tr>
</tbody>
</table>

Valeurs mesurées

<table>
<thead>
<tr>
<th>Nature du sol :</th>
<th>remblais miniers très fins, rouges ; sol humide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol saturé :</td>
<td>prélevé au centre de l’anneau après essai</td>
</tr>
<tr>
<td>Sol humide :</td>
<td>prélevé près de l’anneau d’essai (conditions du sol avant essai)</td>
</tr>
</tbody>
</table>

ESSAI D’INFILTRATION

<table>
<thead>
<tr>
<th>N° injection</th>
<th>Durée infiltration (mm)</th>
<th>Temps cumulé (mn)</th>
<th>Hauteur cumulée (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,08</td>
<td>1,08</td>
<td>3,2</td>
</tr>
<tr>
<td>2</td>
<td>2,5</td>
<td>3,58</td>
<td>6,4</td>
</tr>
<tr>
<td>3</td>
<td>3,5</td>
<td>7,08</td>
<td>9,5</td>
</tr>
<tr>
<td>4</td>
<td>3,5</td>
<td>10,58</td>
<td>12,7</td>
</tr>
<tr>
<td>5</td>
<td>3,5</td>
<td>14,08</td>
<td>15,9</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>18,08</td>
<td>19,1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>22,08</td>
<td>22,3</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>26,08</td>
<td>25,5</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>30,08</td>
<td>28,6</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>34,08</td>
<td>31,8</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>38,08</td>
<td>35,0</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vitesse d’infiltration (Vₛ) à saturation :

| Vitesse d’infiltration (Vₛ) à saturation : | 0,0125 mm/s | 1,25E-05 m/s |

Vitesse de poré (Vₛ/ε) :

| Vitesse de poré (Vₛ/ε) : | 0,036468 mm/s | 3,65E-05 m/s | 3,15 |

Flux d’infiltration

<table>
<thead>
<tr>
<th>Flux d’infiltration</th>
<th>Vₛ (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vₛ (m/s)</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>0,01</td>
</tr>
<tr>
<td>1</td>
<td>0,10</td>
</tr>
<tr>
<td>0,1</td>
<td>0,01</td>
</tr>
</tbody>
</table>

ESSAI D’INFILTRATION

<table>
<thead>
<tr>
<th>Diamètre anneau d’infiltration (cm) :</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section (cm²) :</td>
<td>314,15</td>
</tr>
<tr>
<td>Volumes unitaires infiltrés (cm³) :</td>
<td>100</td>
</tr>
<tr>
<td>Hauteur d’eau unitaire par injection (mm) :</td>
<td>3,2</td>
</tr>
</tbody>
</table>

Infiltration cumulée en fonction du temps

<table>
<thead>
<tr>
<th>Infiltration cumulée en fonction du temps</th>
<th>Temps cumulé (mn)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

Flux d’infiltration

<table>
<thead>
<tr>
<th>Flux d’infiltration</th>
<th>Vₛ (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vₛ (m/s)</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>0,01</td>
</tr>
<tr>
<td>1</td>
<td>0,10</td>
</tr>
<tr>
<td>0,1</td>
<td>0,01</td>
</tr>
</tbody>
</table>

ESSAI D’INFILTRATION

<table>
<thead>
<tr>
<th>Diamètre anneau d’infiltration (cm) :</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section (cm²) :</td>
<td>314,15</td>
</tr>
<tr>
<td>Volumes unitaires infiltrés (cm³) :</td>
<td>100</td>
</tr>
<tr>
<td>Hauteur d’eau unitaire par injection (mm) :</td>
<td>3,2</td>
</tr>
</tbody>
</table>

Infiltration cumulée en fonction du temps

<table>
<thead>
<tr>
<th>Infiltration cumulée en fonction du temps</th>
<th>Temps cumulé (mn)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

Flux d’infiltration

<table>
<thead>
<tr>
<th>Flux d’infiltration</th>
<th>Vₛ (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vₛ (m/s)</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>0,01</td>
</tr>
<tr>
<td>1</td>
<td>0,10</td>
</tr>
<tr>
<td>0,1</td>
<td>0,01</td>
</tr>
</tbody>
</table>
ESSAI BEST - MESURES REALISEES

N° Essai : BEST 4

Etude : ADEME - St Laurent le Minier
Localisation : Bassin N°2, 3 m à l’ouest de BEST 3
Essai réalisé par : B. DUBEARNES

CARACTERISTIQUES DU SOL TESTE

<table>
<thead>
<tr>
<th>Sol saturé</th>
<th>Nature du sol : remblais miniers très fins, rouges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse brute humide</td>
<td>280 g</td>
</tr>
<tr>
<td>Masse Tare</td>
<td>51,6 g</td>
</tr>
<tr>
<td>Masse nette humide</td>
<td>228,4 g</td>
</tr>
<tr>
<td>Section intérieure carottier</td>
<td>11,04465 cm²</td>
</tr>
<tr>
<td>Longueur carottier</td>
<td>1,88 cm</td>
</tr>
<tr>
<td>Volume échantillon</td>
<td>176,3 cm³</td>
</tr>
<tr>
<td>Masse vol humide</td>
<td>1,45 g</td>
</tr>
<tr>
<td>Masse sol sec</td>
<td>52,1 g</td>
</tr>
<tr>
<td>Masse volumique sol sec</td>
<td>0,30 g/cm³</td>
</tr>
<tr>
<td>Masse d’eau</td>
<td>0,429 g/cm³</td>
</tr>
<tr>
<td>% saturation</td>
<td>100 %</td>
</tr>
<tr>
<td>Teneur en eau volumique</td>
<td>42,9 %</td>
</tr>
<tr>
<td>Porosite</td>
<td>11 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sol humide</th>
<th>Nature du sol : remblais miniers très fins, rouges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse brute humide</td>
<td>240,9 g</td>
</tr>
<tr>
<td>Masse Tare</td>
<td>51,6 g</td>
</tr>
<tr>
<td>Masse nette humide</td>
<td>189,3 g</td>
</tr>
<tr>
<td>Section intérieure carottier</td>
<td>11,04465 cm²</td>
</tr>
<tr>
<td>Longueur carottier</td>
<td>10,8 cm</td>
</tr>
<tr>
<td>Volume échantillon</td>
<td>193,3 cm³</td>
</tr>
<tr>
<td>Masse vol humide</td>
<td>1,59 g</td>
</tr>
<tr>
<td>Masse sol sec</td>
<td>169,2 g</td>
</tr>
<tr>
<td>Masse volumique sol sec</td>
<td>20,1 g</td>
</tr>
<tr>
<td>Masse d’eau</td>
<td>0,12 g/cm³</td>
</tr>
<tr>
<td>% saturation</td>
<td>39,3 %</td>
</tr>
<tr>
<td>Teneur en eau volumique</td>
<td>17 %</td>
</tr>
<tr>
<td>Porosite</td>
<td>12 %</td>
</tr>
</tbody>
</table>

ESSAI D’INFILTRATION

Diamètre anneau d’infiltration (cm) : 20
Volumes unitaires infiltrés (cm³) : 314,15
Hauteur d’eau unitaire par injection (mm) : 3,2

<table>
<thead>
<tr>
<th>N° injection</th>
<th>Durée infiltration (mn)</th>
<th>Temps cumulé (mn)</th>
<th>Hauteur cumulée (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,25</td>
<td>0,25</td>
<td>3,2</td>
</tr>
<tr>
<td>2</td>
<td>0,75</td>
<td>1</td>
<td>6,4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>9,5</td>
</tr>
<tr>
<td>4</td>
<td>1,5</td>
<td>3,5</td>
<td>12,7</td>
</tr>
<tr>
<td>5</td>
<td>1,5</td>
<td>5</td>
<td>15,9</td>
</tr>
<tr>
<td>6</td>
<td>1,5</td>
<td>6,5</td>
<td>19,1</td>
</tr>
<tr>
<td>7</td>
<td>1,5</td>
<td>8</td>
<td>22,3</td>
</tr>
<tr>
<td>8</td>
<td>1,75</td>
<td>9,75</td>
<td>25,5</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>11,75</td>
<td>28,6</td>
</tr>
<tr>
<td>10</td>
<td>2,25</td>
<td>14</td>
<td>31,8</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>16</td>
<td>35,0</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>18</td>
<td>38,2</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>20</td>
<td>41,4</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>22</td>
<td>44,6</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>24</td>
<td>47,7</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>26</td>
<td>50,9</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>28</td>
<td>54,1</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>30</td>
<td>57,3</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vitesse d’infiltration (V_s) à saturation : 0,025 mm/s
Flux d’infiltration : 2,50E-05 m/s

Vitesse de pore (V_p/ε) : 0,058297 mm/s
Flux d’infiltration : 5,83E-05 m/s

Graphique : Infiltration cumulée en fonction du temps

Graphique : Flux d’infiltration

Étude : ADEME - St Laurent le Minier
Essai réalisé par : B. DUBEARNES
Localisation : Bassin N°2, 3 m à l’ouest de BEST 3

Granulométrie d(0,5) : 47,5 µm
ESSAI BEST - MESURES REALISEES

N° Essai : BEST 5

Etude : ADEME - St Laurent le Minier
Localisation : Jardin Delmot, au nord de la parcelle cultivée
Essai réalisé par : B. DUBEARNES

CARACTERISTIQUES DU SOL TESTE

Nature du sol : sol gris-btun, limono-sableux, compact

| Granulométrie d(0,5) : | 28,6 µm |

Unités :
- g
- g/cm³
- cm
- cm³
- g
- g/cm³
- %
- %

Sol saturé : prélevé au centre de l’anneau après essai
Sol humide : prélevé près de l’anneau d’essai (conditions du sol avant essai)

<table>
<thead>
<tr>
<th>Valeurs mesurées</th>
<th>Valeurs calculées</th>
<th>Sans objet</th>
</tr>
</thead>
</table>

ESSAI D’INFILTRATION

Diamètre anneau d’infiltration (cm) : 20
Section (cm²) : 314,15
Volumes unitaires infiltrés (cm³) : 100
Hauteur d’eau unitaire par injection (mm) : 3,2

<table>
<thead>
<tr>
<th>N° injection</th>
<th>Durée infiltration mn</th>
<th>Temps cumulé mn</th>
<th>Hauteur cumulée mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3,2</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>6</td>
<td>6,4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>12</td>
<td>9,5</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>19</td>
<td>12,7</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>28</td>
<td>15,9</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>38</td>
<td>19,1</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>48</td>
<td>22,3</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>58</td>
<td>25,5</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>68</td>
<td>28,6</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>78</td>
<td>31,8</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>88</td>
<td>35,0</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Infiltration cumulée en fonction du temps

- **Vitesse d’infiltration (V_s) à saturation :** 0,0052 mm/s, 5,20E-06 m/s
- **Vitesse de pore (V_s/ε) :** 0,012711 mm/s, 1,27E-05 m/s

Flux d’infiltration
Etude : ADEME - St Laurent le Minier

Localisation : Jardin Delmot - Sud parcelle cultivée

Essai réalisé par : B. DUBEARNES

Granulométrie d(0,5) :

- $\mu m = 51,7$

<table>
<thead>
<tr>
<th>Nature du sol : remblais miniers très fins, rouges</th>
<th>Granulométrie d(0,5) : 51,7 μm</th>
</tr>
</thead>
</table>

Sol saturé :
- Prélevé au centre de l’anneau après essai
- Valeurs mesurées
- Valeurs calculées
- Sans objet

Sol humide :
- Prélevé près de l’anneau d’essai (conditions du sol avant essai)

ESSAI D’INFILTRATION

<table>
<thead>
<tr>
<th>N° injection</th>
<th>Durée infiltration (mm)</th>
<th>Temp cumulé (mn)</th>
<th>Hauteur cumulée (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,5</td>
<td>0,5</td>
<td>3,2</td>
</tr>
<tr>
<td>2</td>
<td>1,5</td>
<td>2</td>
<td>6,4</td>
</tr>
<tr>
<td>3</td>
<td>1,5</td>
<td>3,5</td>
<td>9,5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5,5</td>
<td>12,7</td>
</tr>
<tr>
<td>5</td>
<td>2,5</td>
<td>10</td>
<td>20,4</td>
</tr>
<tr>
<td>6</td>
<td>2,5</td>
<td>12,5</td>
<td>22,3</td>
</tr>
<tr>
<td>7</td>
<td>2,25</td>
<td>14,5</td>
<td>25,5</td>
</tr>
<tr>
<td>8</td>
<td>2,25</td>
<td>16,75</td>
<td>28,6</td>
</tr>
<tr>
<td>9</td>
<td>2,25</td>
<td>19</td>
<td>31,8</td>
</tr>
<tr>
<td>10</td>
<td>2,25</td>
<td>21,5</td>
<td>35,0</td>
</tr>
<tr>
<td>11</td>
<td>2,25</td>
<td>24</td>
<td>38,2</td>
</tr>
<tr>
<td>12</td>
<td>2,25</td>
<td>26,5</td>
<td>41,4</td>
</tr>
<tr>
<td>13</td>
<td>2,25</td>
<td>29</td>
<td>44,6</td>
</tr>
<tr>
<td>14</td>
<td>2,25</td>
<td>31,5</td>
<td>47,7</td>
</tr>
<tr>
<td>15</td>
<td>2,25</td>
<td>34</td>
<td>51</td>
</tr>
<tr>
<td>16</td>
<td>2,25</td>
<td>36,5</td>
<td>54</td>
</tr>
<tr>
<td>17</td>
<td>2,25</td>
<td>39</td>
<td>57</td>
</tr>
<tr>
<td>18</td>
<td>2,25</td>
<td>41,5</td>
<td>60</td>
</tr>
<tr>
<td>19</td>
<td>2,25</td>
<td>44</td>
<td>63</td>
</tr>
<tr>
<td>20</td>
<td>2,25</td>
<td>47,5</td>
<td>66</td>
</tr>
<tr>
<td>21</td>
<td>2,25</td>
<td>50</td>
<td>69</td>
</tr>
</tbody>
</table>

ESSAI BEST - MESURES REALISEES

N° Essai : BEST 6

Localisation : Jardin Delmot - Sud parcelle cultivée

CARACTERISTIQUES DU SOL TESTE

<table>
<thead>
<tr>
<th>Nature du sol : remblais miniers très fins, rouges</th>
<th>Granulométrie d(0,5) : 51,7 μm</th>
</tr>
</thead>
</table>

Caractéristiques du sol testé:
- **Unités** :
 - g : gramme
 - g : gramme
 - g : gramme
 - cm^2 : centimètre carré
 - cm : centimètre
 - g/cm^3 : gramme par cube de centimètre
 - g : gramme
 - g/cm^3 : gramme par cube de centimètre
 - g : gramme
 - g/cm^3 : gramme par cube de centimètre
 - $%$: pourcentage
 - $%$: pourcentage

Porosité:
- **Sol saturé :** prélevé au centre de l’anneau après essai
- **Sol humide :** prélevé près de l’anneau d’essai (conditions du sol avant essai)

ESSAI D’INFILTRATION

<table>
<thead>
<tr>
<th>N° injection</th>
<th>Durée infiltration (mm)</th>
<th>Temp cumulé (mn)</th>
<th>Hauteur cumulée (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,5</td>
<td>0,5</td>
<td>3,2</td>
</tr>
<tr>
<td>2</td>
<td>1,5</td>
<td>2</td>
<td>6,4</td>
</tr>
<tr>
<td>3</td>
<td>1,5</td>
<td>3,5</td>
<td>9,5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5,5</td>
<td>12,7</td>
</tr>
<tr>
<td>5</td>
<td>2,5</td>
<td>8</td>
<td>15,9</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>10</td>
<td>19,1</td>
</tr>
<tr>
<td>7</td>
<td>2,25</td>
<td>12,5</td>
<td>22,3</td>
</tr>
<tr>
<td>8</td>
<td>2,25</td>
<td>14,5</td>
<td>25,5</td>
</tr>
<tr>
<td>9</td>
<td>2,25</td>
<td>16,75</td>
<td>28,6</td>
</tr>
<tr>
<td>10</td>
<td>2,25</td>
<td>19</td>
<td>31,8</td>
</tr>
<tr>
<td>11</td>
<td>2,25</td>
<td>21,5</td>
<td>35,0</td>
</tr>
<tr>
<td>12</td>
<td>2,25</td>
<td>24</td>
<td>38,2</td>
</tr>
<tr>
<td>13</td>
<td>2,25</td>
<td>26,5</td>
<td>41,4</td>
</tr>
<tr>
<td>14</td>
<td>2,25</td>
<td>29</td>
<td>44,6</td>
</tr>
<tr>
<td>15</td>
<td>2,25</td>
<td>31,5</td>
<td>47,7</td>
</tr>
<tr>
<td>16</td>
<td>2,25</td>
<td>34</td>
<td>51</td>
</tr>
<tr>
<td>17</td>
<td>2,25</td>
<td>36,5</td>
<td>54</td>
</tr>
<tr>
<td>18</td>
<td>2,25</td>
<td>39</td>
<td>57</td>
</tr>
<tr>
<td>19</td>
<td>2,25</td>
<td>41,5</td>
<td>60</td>
</tr>
<tr>
<td>20</td>
<td>2,25</td>
<td>44</td>
<td>63</td>
</tr>
<tr>
<td>21</td>
<td>2,25</td>
<td>47,5</td>
<td>66</td>
</tr>
</tbody>
</table>

**Vitesse d’infiltration (V_s) à saturation :

- 0,022 mm/s

**Vitesse de pore (V_s/ε) :

- 0,060468 mm/s

Flux d’infiltration

Infiltration cumulée en fonction du temps

Flux d’infiltration

Remarque

- **Diamètre anneau d’infiltration (cm) :** 20
- **Volumes unitaires infiltrés (cm³) :** 100
- **Hauteur d’eau unitaire par injection (mm) :** 3,2
Nature du sol : remblais miniers très fins, beiges

<table>
<thead>
<tr>
<th>Unités</th>
<th>Sol saturé</th>
<th>Sol humide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>247,8</td>
<td>206</td>
</tr>
<tr>
<td>g</td>
<td>51,6</td>
<td>51,6</td>
</tr>
<tr>
<td>g</td>
<td>196,2</td>
<td>154,4</td>
</tr>
<tr>
<td>cm²</td>
<td>11,04465</td>
<td>11,04465</td>
</tr>
<tr>
<td>cm</td>
<td>10,9</td>
<td>11,1</td>
</tr>
<tr>
<td>cm³</td>
<td>120,4</td>
<td>122,6</td>
</tr>
<tr>
<td>g/cm³</td>
<td>1,63</td>
<td>1,26</td>
</tr>
<tr>
<td>g</td>
<td>130,5</td>
<td>130,4</td>
</tr>
<tr>
<td>g</td>
<td>1,08</td>
<td>1,06</td>
</tr>
<tr>
<td>g</td>
<td>65,7</td>
<td>24</td>
</tr>
<tr>
<td>g/cm³</td>
<td>0,5</td>
<td>0,18</td>
</tr>
<tr>
<td>%</td>
<td>54,6</td>
<td>35,9</td>
</tr>
<tr>
<td>%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Porosité

<table>
<thead>
<tr>
<th>Nature du sol</th>
<th>Porosité ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol saturé</td>
<td>0,546</td>
</tr>
<tr>
<td>Sol humide</td>
<td>0,196</td>
</tr>
</tbody>
</table>

Granulométrie d(0,5) : 38,1 µm

ESSAI D’INFILTRATION

- **Diamètre anneau d’infiltration (cm) :** 20
- **Volumes unitaires infiltrés (cm³) :** 100
- **Hauteur d’eau unitaire par injection (mm) :** 3,2

<table>
<thead>
<tr>
<th>N° injection</th>
<th>Durée infiltration mm</th>
<th>Temps cumulé mn</th>
<th>Hauteur cumulée mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,25</td>
<td>0,25</td>
<td>3,2</td>
</tr>
<tr>
<td>2</td>
<td>0,75</td>
<td>1</td>
<td>6,4</td>
</tr>
<tr>
<td>3</td>
<td>1,25</td>
<td>2,25</td>
<td>9,5</td>
</tr>
<tr>
<td>4</td>
<td>0,75</td>
<td>3</td>
<td>12,7</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>4</td>
<td>15,9</td>
</tr>
<tr>
<td>6</td>
<td>0,75</td>
<td>4,75</td>
<td>19,1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>5,75</td>
<td>22,3</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>6,75</td>
<td>25,5</td>
</tr>
<tr>
<td>9</td>
<td>0,75</td>
<td>7,5</td>
<td>28,6</td>
</tr>
<tr>
<td>10</td>
<td>0,75</td>
<td>8,25</td>
<td>31,8</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>9,25</td>
<td>35,0</td>
</tr>
<tr>
<td>12</td>
<td>0,75</td>
<td>10</td>
<td>38,2</td>
</tr>
<tr>
<td>13</td>
<td>0,75</td>
<td>10,75</td>
<td>41,4</td>
</tr>
<tr>
<td>14</td>
<td>0,75</td>
<td>11,5</td>
<td>44,6</td>
</tr>
<tr>
<td>15</td>
<td>0,75</td>
<td>12,25</td>
<td>47,7</td>
</tr>
<tr>
<td>16</td>
<td>0,75</td>
<td>13</td>
<td>50,9</td>
</tr>
<tr>
<td>17</td>
<td>0,75</td>
<td>13,75</td>
<td>54,1</td>
</tr>
<tr>
<td>18</td>
<td>0,75</td>
<td>14,5</td>
<td>57,3</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vitesse d’infiltration (Vₛ) à saturation : 0,07 mm/s 7,00E-05 m/s

Vitesse de pore (Vₛ/ε) : 0,128266 mm/s 1,28E-04 m/s 11,08
CARACTERISTIQUES DU SOL TESTÉ

Granulométrie d(0,5) : 63,9 µm

<table>
<thead>
<tr>
<th>Nature du sol :</th>
<th>remblais miniers probables : terre fine beige, quelques cailloux en surface</th>
<th>Granulométrie d(0,5) : 63,9 µm</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sol saturé</th>
<th>Sol humide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse brute humide M_{bh}</td>
<td>Masse brute humide M_{bh}</td>
</tr>
<tr>
<td>Masse Tare M_t</td>
<td>Masse Tare M_t</td>
</tr>
<tr>
<td>Masse nette humide M_{nh}</td>
<td>Masse nette humide M_{nh}</td>
</tr>
<tr>
<td>Section intérieure carottier S</td>
<td>Section intérieure carottier S</td>
</tr>
<tr>
<td>Longueur carottier L</td>
<td>Longueur carottier L</td>
</tr>
<tr>
<td>Volume échantillon V</td>
<td>Volume échantillon V</td>
</tr>
<tr>
<td>Masse vol humide M_{vh}</td>
<td>Masse vol humide M_{vh}</td>
</tr>
<tr>
<td>Masse sol sec M_s</td>
<td>Masse sol sec M_s</td>
</tr>
<tr>
<td>Masse volumique sol sec M_{v}^{s}</td>
<td>Masse volumique sol sec M_{v}^{s}</td>
</tr>
<tr>
<td>Masse d'eau M_w</td>
<td>Masse d'eau M_w</td>
</tr>
<tr>
<td>Teneur en eau massique W</td>
<td>Teneur en eau massique W</td>
</tr>
<tr>
<td>Teneur en eau volumique θ</td>
<td>Teneur en eau volumique θ</td>
</tr>
<tr>
<td>% saturation</td>
<td>% saturation</td>
</tr>
<tr>
<td>Porosité ε</td>
<td>Porosité ε</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unités</th>
<th>g</th>
<th>g</th>
<th>g</th>
<th>cm2</th>
<th>cm</th>
<th>cm3</th>
<th>g/cm3</th>
<th>g</th>
<th>g/cm3</th>
<th>g</th>
<th>g/cm3</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol saturé</td>
<td>254,3</td>
<td>51,6</td>
<td>202,7</td>
<td>11,04465</td>
<td>10,9</td>
<td>120,4</td>
<td>1,68</td>
<td>160,3</td>
<td>1,33</td>
<td>42,4</td>
<td>0,26</td>
<td>0,352</td>
<td>100</td>
</tr>
<tr>
<td>Sol humide</td>
<td>209,1</td>
<td>51,6</td>
<td>157,5</td>
<td>11,04465</td>
<td>11,0</td>
<td>121,5</td>
<td>1,30</td>
<td>139,6</td>
<td>1,15</td>
<td>17,9</td>
<td>0,13</td>
<td>0,147</td>
<td>41,8</td>
</tr>
</tbody>
</table>

Sol saturé : prélevé au centre de l’anneau après essai
Sol humide : prélevé près de l’anneau d’essai (conditions du sol avant essai)

ESSAI D’INFILTRATION

Diamètre anneau d’infiltration (cm) : 20
Section (cm2) : 314,15
Volumes unitaires infiltrés (cm3) : 100
Hauteur d’eau unitaire par injection (mm) : 3,2

<table>
<thead>
<tr>
<th>N° injection</th>
<th>Durée infiltration (mm)</th>
<th>Temps cumulé (mn)</th>
<th>Hauteur cumulée (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0,33</td>
<td>0,33</td>
<td>1,64</td>
</tr>
<tr>
<td>2</td>
<td>1,28</td>
<td>1,61</td>
<td>3,2</td>
</tr>
<tr>
<td>3</td>
<td>1,75</td>
<td>3,36</td>
<td>9,5</td>
</tr>
<tr>
<td>4</td>
<td>2,25</td>
<td>5,61</td>
<td>12,7</td>
</tr>
<tr>
<td>5</td>
<td>2,25</td>
<td>7,86</td>
<td>15,9</td>
</tr>
<tr>
<td>6</td>
<td>2,5</td>
<td>10,36</td>
<td>19,1</td>
</tr>
<tr>
<td>7</td>
<td>2,5</td>
<td>12,86</td>
<td>22,3</td>
</tr>
<tr>
<td>8</td>
<td>2,5</td>
<td>15,36</td>
<td>25,5</td>
</tr>
<tr>
<td>9</td>
<td>2,5</td>
<td>17,86</td>
<td>28,6</td>
</tr>
<tr>
<td>10</td>
<td>2,75</td>
<td>20,61</td>
<td>31,8</td>
</tr>
<tr>
<td>11</td>
<td>2,25</td>
<td>22,86</td>
<td>35,0</td>
</tr>
<tr>
<td>12</td>
<td>2,75</td>
<td>25,61</td>
<td>38,2</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>28,61</td>
<td>41,4</td>
</tr>
<tr>
<td>14</td>
<td>2,75</td>
<td>31,36</td>
<td>44,6</td>
</tr>
<tr>
<td>15</td>
<td>2,75</td>
<td>34,11</td>
<td>47,7</td>
</tr>
<tr>
<td>16</td>
<td>2,75</td>
<td>36,86</td>
<td>50,9</td>
</tr>
<tr>
<td>17</td>
<td>2,75</td>
<td>39,61</td>
<td>54,1</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vitesse d’infiltration (V_s) à saturation :

- $0,019$ mm/s
- $1,90E-05$ m/s

Vitesse de pore (V_s/ε) :

- $0,053947$ mm/s
- $5,39E-05$ m/s
- $4,66$ m/j